Journal of The American Society for Mass Spectrometry

, Volume 25, Issue 9, pp 1538–1548 | Cite as

An Effective Approach for Coupling Direct Analysis in Real Time with Atmospheric Pressure Drift Tube Ion Mobility Spectrometry

  • Joel D. Keelor
  • Prabha Dwivedi
  • Facundo M. Fernández
Research Article

Abstract

Drift tube ion mobility spectrometry (DTIMS) has evolved as a robust analytical platform routinely used for screening small molecules across a broad suite of chemistries ranging from food and pharmaceuticals to explosives and environmental toxins. Most modern atmospheric pressure IM detectors employ corona discharge, photoionization, radioactive, or electrospray ion sources for efficient ion production. Coupling standalone DTIMS with ambient plasma-based techniques, however, has proven to be an exceptional challenge. Device sensitivity with near-ground ambient plasma sources is hindered by poor ion transmission at the source–instrument interface, where ion repulsion is caused by the strong electric field barrier of the high potential ion mobility spectrometry (IMS) inlet. To overcome this shortfall, we introduce a new ion source design incorporating a repeller point electrode used to shape the electric field profile and enable ion transmission from a direct analysis in real time (DART) plasma ion source. Parameter space characterization studies of the DART DTIMS setup were performed to ascertain the optimal configuration for the source assembly favoring ion transport. Preliminary system capabilities for the direct screening of solid pharmaceuticals are briefly demonstrated.

Key words

Drift tube ion mobility spectrometry Direct analysis in real time (DART) Point electrode Resistive glass Schlieren imaging 

Supplementary material

13361_2014_926_MOESM1_ESM.pdf (401 kb)
ESM 1(PDF 400 kb)

References

  1. 1.
    Borsdorf, H., Eiceman, G.A.: Ion mobility spectrometry: principles and applications. Appl. Spectrosc. Rev. 41, 323–375 (2006)CrossRefGoogle Scholar
  2. 2.
    Mäkinen, M.A., Anttalainen, O.A., Sillanpää, M.E.T.: Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 82, 9594–9600 (2010)CrossRefGoogle Scholar
  3. 3.
    Ewing, R.G., Atkinson, D.A., Eiceman, G.A., Ewing, G.J.: A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54, 515–529 (2001)CrossRefGoogle Scholar
  4. 4.
    Buryakov, I.A., Kolomiets, Y.N.: Rapid determination of explosives and narcotics using a multicapillary-column gas chromatograph and an ion-mobility spectrometer. J. Anal. Chem. 58, 944–950 (2003)CrossRefGoogle Scholar
  5. 5.
    Márquez-Sillero, I., Aguilera-Herrador, E., Cárdenas, S., Valcárcel, M.: Ion-mobility spectrometry for environmental analysis. TrAC Trends Anal. Chem. 30, 677–690 (2011)CrossRefGoogle Scholar
  6. 6.
    Vautz, W., Zimmermann, D., Hartmann, M., Baumbach, J.I., Nolte, J., Jung, J.: Ion mobility spectrometry for food quality and safety. Food Addit. Contam. 23, 1064–1073 (2006)CrossRefGoogle Scholar
  7. 7.
    Eiceman, G.A., Blyth, D.A., Shoff, D.B., Snyder, A.P.: Screening of solid commercial pharmaceuticals using ion mobility spectrometry. Anal. Chem. 62, 1374–1379 (1990)CrossRefGoogle Scholar
  8. 8.
    Fernández-Maestre, R., Hill Jr., H.: Ion mobility spectrometry for the rapid analysis of over-the-counter drugs and beverages. Int. J. Ion Mobil. Spectrom. 12, 91–102 (2009)CrossRefGoogle Scholar
  9. 9.
    Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H.: Ion mobility-mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008)CrossRefGoogle Scholar
  10. 10.
    Asbury, G.R., Hill, H.H.: Evaluation of ultrahigh resolution ion mobility spectrometry as an analytical separation device in chromatographic terms. J. Microcolumn Sep. 12, 172–178 (2000)CrossRefGoogle Scholar
  11. 11.
    Siems, W.F., Wu, C., Tarver, E.E., Hill, H.H., Larsen, P.R., McMinn, D.G.: Measuring the resolving power of ion mobility spectrometers. Anal. Chem. 66, 4195–4201 (1994)CrossRefGoogle Scholar
  12. 12.
    Spangler, G.E., Collins, C.I.: Peak shape analysis and plate theory for plasma chromatography. Anal. Chem. 47, 403–407 (1975)CrossRefGoogle Scholar
  13. 13.
    Spangler, G.E.: Expanded theory for the resolving power of a linear ion mobility spectrometer. Int. J. Mass Spectrom. 220, 399–418 (2002)CrossRefGoogle Scholar
  14. 14.
    Tabrizchi, M.: Temperature effects on resolution in ion mobility spectrometry. Talanta 62, 65–70 (2004)CrossRefGoogle Scholar
  15. 15.
    Tabrizchi, M., Rouholahnejad, F.: Comparing the effect of pressure and temperature on ion mobilities. J. Phys. D. Appl. Phys. 38, 857–862 (2005)CrossRefGoogle Scholar
  16. 16.
    Chen, Y.H., Siems, W.F., Hill Jr., H.H.: Fourier transform electrospray ion mobility spectrometry. Anal. Chim. Acta. 334, 75–84 (1996)CrossRefGoogle Scholar
  17. 17.
    Kwasnik, M., Caramore, J., Fernández, F.M.: Digitally-multiplexed nanoelectrospray ionization atmospheric pressure drift tube ion mobility spectrometry. Anal. Chem. 81, 1587–1594 (2009)CrossRefGoogle Scholar
  18. 18.
    Myung, S., Lee, Y.J., Moon, M.H., Taraszka, J., Sowell, R., Koeniger, S., Hilderbrand, A.E., Valentine, S.J., Cherbas, L., Cherbas, P., Kaufmann, T.C., Miller, D.F., Mechref, Y., Novotny, M.V., Ewing, M.A., Sporleder, C.R., Clemmer, D.E.: Development of high-sensitivity ion trap ion mobility spectrometry time-of-flight techniques: a high-throughput nano-LC-IMS-ToF separation of peptides arising from a Drosophila protein extract. Anal. Chem. 75, 5137–5145 (2003)CrossRefGoogle Scholar
  19. 19.
    Tang, K., Shvartsburg, A.A., Lee, H.-N., Prior, D.C., Buschbach, M.A., Li, F., Tolmachev, A.V., Anderson, G.A., Smith, R.D.: High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem. 77, 3330–3339 (2005)CrossRefGoogle Scholar
  20. 20.
    Baker, E., Clowers, B., Li, F., Tang, K., Tolmachev, A., Prior, D., Belov, M., Smith, R.: Ion mobility spectrometry—mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18, 1176–1187 (2007)CrossRefGoogle Scholar
  21. 21.
    Gillig, K.J., Ruotolo, B., Stone, E.G., Russell, D.H., Fuhrer, K., Gonin, M., Schultz, A.J.: Coupling high-pressure MALDI with ion mobility/orthogonal time-of flight mass spectrometry. Anal. Chem. 72, 3965–3971 (2000)CrossRefGoogle Scholar
  22. 22.
    Tabrizchi, M., Rouholahnejad, F.: Pressure effects on resolution in ion mobility spectrometry. Talanta 69, 87–90 (2006)CrossRefGoogle Scholar
  23. 23.
    Davis, E.J., Dwivedi, P., Tam, M., Siems, W.F., Hill, H.H.: High-pressure ion mobility spectrometry. Anal. Chem. 81, 3270–3275 (2009)CrossRefGoogle Scholar
  24. 24.
    Guharay, S.K., Dwivedi, P., Hill, H.H.: Ion mobility spectrometry: ion source development and applications in physical and biological sciences. IEEE Trans. Plasma Sci. 36, 1458–1470 (2008)CrossRefGoogle Scholar
  25. 25.
    Monge, M.E., Harris, G.A., Dwivedi, P., Fernández, F.M.: Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. 113, 2269–2308 (2013)CrossRefGoogle Scholar
  26. 26.
    Takats, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004)CrossRefGoogle Scholar
  27. 27.
    Nemes, P., Vertes, A.: Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007)CrossRefGoogle Scholar
  28. 28.
    Haapala, M., Pól, J., Saarela, V., Arvola, V., Kotiaho, T., Ketola, R.A., Franssila, S., Kauppila, T.J., Kostiainen, R.: Desorption atmospheric pressure photoionization. Anal. Chem. 79, 7867–7872 (2007)CrossRefGoogle Scholar
  29. 29.
    Cody, R.B., Laramée, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005)CrossRefGoogle Scholar
  30. 30.
    Andrade, F.J., Shelley, J.T., Wetzel, W.C., Webb, M.R., Gamez, G., Ray, S.J., Hieftje, G.M.: Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal. Chem. 80, 2646–2653 (2008)CrossRefGoogle Scholar
  31. 31.
    Harper, J.D., Charipar, N.A., Mulligan, C.C., Zhang, X., Cooks, R.G., Ouyang, Z.: Low-temperature plasma probe for ambient desorption ionization. Anal. Chem. 80, 9097–9104 (2008)CrossRefGoogle Scholar
  32. 32.
    Weston, D.J., Bateman, R., Wilson, I.D., Wood, T.R., Creaser, C.S.: Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization. Anal. Chem. 77, 7572–7580 (2005)CrossRefGoogle Scholar
  33. 33.
    Myung, S., Wiseman, J.M., Valentine, S.J., Takáts, Z., Cooks, R.G., Clemmer, D.E.: Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured states. J. Phys. Chem. B 110, 5045–5051 (2006)Google Scholar
  34. 34.
    Roscioli, K.M., Tufariello, J.A., Zhang, X., Li, S.X., Goetz, G.H., Cheng, G., Siems, W.F., Hill, H.H.: Desorption electrospray ionization (DESI) with atmospheric pressure ion mobility spectrometry for drug detection. Analyst 139, 1740–1750 (2014)CrossRefGoogle Scholar
  35. 35.
    Harris, G.A., Graf, S., Knochenmuss, R., Fernandez, F.M.: Coupling laser ablation/desorption electrospray ionization to atmospheric pressure drift tube ion mobility spectrometry for the screening of antimalarial drug quality. Analyst 137, 3039–3044 (2012)CrossRefGoogle Scholar
  36. 36.
    Jafari, M.T.: Low-temperature plasma ionization ion mobility spectrometry. Anal. Chem. 83, 797–803 (2010)CrossRefGoogle Scholar
  37. 37.
    Michels, A., Tombrink, S., Vautz, W., Miclea, M., Franzke, J.: Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry. Spectrochim. Acta B 62, 1208–1215 (2007)CrossRefGoogle Scholar
  38. 38.
    Harris, G.A., Kwasnik, M., Fernández, F.M.: Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals. Anal. Chem. 83, 1908–1915 (2011)CrossRefGoogle Scholar
  39. 39.
    Kwasnik, M., Fernández, F.M.: Theoretical and experimental study of the achievable separation power in resistive-glass atmospheric pressure ion mobility spectrometry. Rapid Commun. Mass Spectrom. 24, 1911–1918 (2010)CrossRefGoogle Scholar
  40. 40.
    Kwasnik, M., Fuhrer, K., Gonin, M., Barbeau, K., Fernández, F.M.: Performance, resolving power, and radial ion distributions of a prototype nanoelectrospray ionization resistive glass atmospheric pressure ion mobility spectrometer. Anal. Chem. 79, 7782–7791 (2007)CrossRefGoogle Scholar
  41. 41.
    Kaur-Atwal, G., O’Connor, G., Aksenov, A., Bocos-Bintintan, V., Paul Thomas, C.L., Creaser, C.: Chemical standards for ion mobility spectrometry: a review. Int. J. Ion Mobil. Spectrom. 12, 1–14 (2009)CrossRefGoogle Scholar
  42. 42.
    Tabrizchi, M., Khayamian, T., Taj, N.: Design and optimization of a corona discharge ionization source for ion mobility spectrometry. Rev. Sci. Instrum. 71, 2321–2328 (2000)CrossRefGoogle Scholar
  43. 43.
    Sekimoto, K., Takayama, M.: Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle. Eur. Phys. J. D 60, 589–599 (2010)CrossRefGoogle Scholar
  44. 44.
    Song, L., Gibson, S.C., Bhandari, D., Cook, K.D., Bartmess, J.E.: Ionization mechanism of positive-ion direct analysis in real time: a transient microenvironment concept. Anal. Chem. 81, 10080–10088 (2009)CrossRefGoogle Scholar
  45. 45.
    Desse, J.M., Deron, R.: Shadow, Schlieren, and color interferometry. J. Aerospace Lab. 1, 1–9 (2009)Google Scholar
  46. 46.
    Settles, G.S., Hackett, E.B., Miller, J.D., Weinstein, L.M.: Full-scale Schlieren flow visualization. In: Crowder, J.P. (ed.) Flow Visualaization. VII, pp. 2–13. Begell House, New York (1995)Google Scholar
  47. 47.
    Bahrami, H., Tabrizchi, M., Farrokhpour, H.: Protonation of caffeine: a theoretical and experimental study. Chem. Phys. 415, 222–227 (2013)Google Scholar
  48. 48.
    Čermák, V.: Detection of long‐lived excited states of molecules by Penning Ionization. J. Chem. Phys. 44, 1318–1323 (1966)Google Scholar
  49. 49.
    Zare, R.N., Larsson, E.O., Berg, R.A.: Franck-Condon factors for electronic band systems of molecular nitrogen. J. Mol. Spectrosc. 15, 117–139 (1965)CrossRefGoogle Scholar
  50. 50.
    Borisov, A.G., Teillet-Billy, D., Gauyacq, J.P.: Singlet-to-triplet conversion in low energy metastable helium-metal surface collisions. Surf. Sci. 284, 337–348 (1993)CrossRefGoogle Scholar
  51. 51.
    Foner, S.N., Hudson, R.L.: Mass spectrometric studies of metastable nitrogen atoms and molecules in active nitrogen. J. Chem. Phys. 37, 1662–1667 (1962)Google Scholar
  52. 52.
    Burns, D.J., Golden, D.E., Galliardt, D.W.: Electron excitation of the E 3σg + state of N2 and subsequent collisional deactivation and energy transfer to the C 3πu state. J. Chem. Phys. 65, 2616–2619 (1976)Google Scholar
  53. 53.
    Shelley, J.T., Wiley, J.S., Hieftje, G.M.: Ultrasensitive ambient mass spectrometric analysis with a pin-to-capillary flowing atmospheric-pressure afterglow source. Anal. Chem. 83, 5741–5748 (2011)CrossRefGoogle Scholar
  54. 54.
    Herron, J.: Modeling studies of the formation and destruction of no in pulsed barrier discharges in nitrogen and air. Plasma Chem. Plasma Process. 21, 581–609 (2001)CrossRefGoogle Scholar
  55. 55.
    Ono, R., Oda, T.: NO formation in a pulsed spark discharge in N2/O2/Ar mixture at atmospheric pressure. J. Phys. D Appl. Phys. 35, 535–548 (2002)Google Scholar
  56. 56.
    Carroll, D.I., Dzidic, I., Stillwell, R.N., Horning, E.C.: Identification of positive reactant ions observed for nitrogen carrier gas in plasma chromatograph mobility studies. Anal. Chem. 47, 1956–1959 (1975)CrossRefGoogle Scholar
  57. 57.
    Harada, Y., Masuda, S., Ozaki, H.: Electron spectroscopy using metastable atoms as probes for solid surfaces. Chem. Rev. 97, 1897–1952 (1997)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Joel D. Keelor
    • 1
  • Prabha Dwivedi
    • 1
  • Facundo M. Fernández
    • 1
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations