Direct Identification of Tyrosine Sulfation by using Ultraviolet Photodissociation Mass Spectrometry

  • Michelle R. Robinson
  • Kevin L. Moore
  • Jennifer S. Brodbelt
Research Article


Sulfation is a common post-translational modification of tyrosine residues in eukaryotes; however, detection using traditional liquid chromatography-mass spectrometry (LC-MS) methods is challenging based on poor ionization efficiency in the positive ion mode and facile neutral loss upon collisional activation. In the present study, 193 nm ultraviolet photodissociation (UVPD) is applied to sulfopeptide anions to generate diagnostic sequence ions, which do not undergo appreciable neutral loss of sulfate even using higher energy photoirradiation parameters. At the same time, neutral loss of SO3 is observed from the precursor and charge-reduced precursor ions, a spectral feature that is useful for differentiating tyrosine sulfation from the nominally isobaric tyrosine phosphorylation. LC-MS detection limits for UVPD analysis in the negative mode were determined to be around 100 fmol for three sulfated peptides, caerulein, cionin, and leu-enkephalin. The LC-UVPD-MS method was applied for analysis of bovine fibrinogen, and its key sulfated peptide was confidently identified.


Ultraviolet photodissociation Sulfation Sulfopeptide Tyrosine 

Supplementary material

13361_2014_910_MOESM1_ESM.docx (5.9 mb)
ESM 1(DOCX 6034 kb)


  1. 1.
    Mann, M., Jensen, O.N.: Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003)CrossRefGoogle Scholar
  2. 2.
    Bettelheim, F.R.: Tyrosine-o-sulfate in a peptide from fibrinogen. J. Am. Chem. Soc. 76, 2838–2839 (1954)CrossRefGoogle Scholar
  3. 3.
    Huttner, W.B.: Sulphation of tyrosine residues-a widespread modification of proteins. Nature 299, 273–276 (1982)CrossRefGoogle Scholar
  4. 4.
    Baeuerle, P.A., Huttner, W.B.: Tyrosine sulfation of yolk proteins 1, 2, and 3 in Drosophila melanogaster. J. Biol. Chem. 260, 6434–6439 (1985)Google Scholar
  5. 5.
    Beisswanger, R., Corbeil, D., Vannier, C., Thiele, C., Dohrmann, U., Ashman, R.K., Niehrs, K.C., Huttner, W.B.: Existence of distinct tyrosylprotein sulfotransferase genes: molecular characterization of tyrosylprotein sulfotransferase-2. Proc. Natl. Acad. Sci. U. S. A. 95, 11134–11139 (1998)CrossRefGoogle Scholar
  6. 6.
    Ouyang, Y.-B., Lane, W.S., Moore, K.L.: Tyrosylprotein sulfotransferase: purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common post-translational modification of eukaryotic proteins. Proc. Natl. Acad. Sci. U. S. A. 95, 2896–2901 (1998)CrossRefGoogle Scholar
  7. 7.
    Ouyang, Y.-B., Moore, K.L.: Molecular cloning and expression of human and mouse tyrosylprotein sulfotransferase-2 and a tyrosylprotein sulfotransferase homologue in Caenorhabditis elegans. J. Biol. Chem. 273, 24770–24774 (1998)CrossRefGoogle Scholar
  8. 8.
    Seibert, C., Cadene, M., Sanfiz, A., Chait, B.T., Sakmar, T.P.: Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proc. Natl. Acad. Sci. U. S. A. 99, 11031–11036 (2002)CrossRefGoogle Scholar
  9. 9.
    Danan, L.M., Yu, Z., Hoffhines, A.J., Moore, K.L., Leary, J.A.: Mass spectrometric kinetic analysis of human tyrosylprotein sulfotransferase-1 and -2. J. Am. Soc. Mass Spectrom. 19, 1459–1466 (2008)CrossRefGoogle Scholar
  10. 10.
    Danan, L.M., Yu, Z., Ludden, P.J., Jia, W., Moore, K.L., Leary, J.A.: Catalytic mechanism of Golgi-resident human tyrosylprotein sulfotransferase-2: a mass spectrometry approach. J. Am. Soc. Mass Spectrom. 21, 1633–1642 (2010)CrossRefGoogle Scholar
  11. 11.
    Moore, K.L.: The biology and enzymology of protein tyrosine O-sulfation. J. Biol. Chem. 278, 24243–24246 (2003)CrossRefGoogle Scholar
  12. 12.
    Huttner, W.B.: Tyrosine sulfation and the secretory pathway. Annu. Rev. Physiol. 50, 363–376 (1988)CrossRefGoogle Scholar
  13. 13.
    Stone, M.J., Chuang, S., Hou, X., Shoham, M., Zhu, J.Z.: Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. New Biotechnol. 25, 299–317 (2009)CrossRefGoogle Scholar
  14. 14.
    Hille, A., Huttner, W.B.: Occurrence of tyrosine sulfate in proteins—a balance sheet. 2. Membrane proteins. Eur. J. Biochem. 188, 587–596 (1990)CrossRefGoogle Scholar
  15. 15.
    Kehoe, J.W., Bertozzi, C.R.: Tyrosine sulfation: a modulator of extracellular protein–protein interactions. Chem. Biol. 7, R57–R61 (2000)CrossRefGoogle Scholar
  16. 16.
    Hortin, G.: Sulfation of tyrosine residues in coagulation factor V. Blood 76, 946–952 (1990)Google Scholar
  17. 17.
    Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N.P., Gerard, C., Sodroski, J., Choe, H.: Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999)CrossRefGoogle Scholar
  18. 18.
    Monigatti, F., Hekking, B., Steen, H.: Protein sulfation analysis—a primer. Biochim. Biophys. Acta 1764, 1904–1913 (2006)CrossRefGoogle Scholar
  19. 19.
    Seibert, C., Sakmar, T.P.: Toward a framework for sulfoproteomics: synthesis and characterization of sulfotyrosine-containing peptides. Biopolymers 90, 459–477 (2008)CrossRefGoogle Scholar
  20. 20.
    Nemeth-Cawley, J.F., Karnik, S., Rouse, J.C.: Analysis of sulfated peptides using positive electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 36, 1301–1311 (2001)CrossRefGoogle Scholar
  21. 21.
    Wolfender, J.-L., Chu, F., Ball, H., Wolfender, F., Fainzilber, M., Baldwin, M.A., Burlingame, A.L.: Identification of tyrosine sulfation in Conus pennaceus conotoxins α-PnIA and α-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry. J. Mass Spectrom. 34, 447–454 (1999)CrossRefGoogle Scholar
  22. 22.
    Medzihradszky, K.F., Guan, S., Maltby, D.A., Burlingame, A.L.: Sulfopeptide fragmentation in electron-capture and electron-transfer dissociation. J. Am. Soc. Mass Spectrom. 18, 1617–1624 (2007)CrossRefGoogle Scholar
  23. 23.
    Mikesh, L.M., Ueberheide, B., Chi, A., Coon, J.J., Syka, J.E.P., Shabanowitz, J., Hunt, D.F.: The utility of ETD mass spectrometry in proteomic analysis. Biochim. Biophys. Acta 1764, 1811–1822 (2006)CrossRefGoogle Scholar
  24. 24.
    Yagami, T., Kitagawa, K., Aida, C., Fujiwara, H., Futaki, S.: Stabilization of a tyrosine O-sulfate residue by a cationic functional group: formation of a conjugate acid–base pair. J. Peptide Res. 56, 239–249 (2000)CrossRefGoogle Scholar
  25. 25.
    Liu, H., Håkansson, K.: Electron capture dissociation of tyrosine O-sulfated peptides complexed with divalent metal cations. Anal. Chem. 78, 7570–7576 (2006)CrossRefGoogle Scholar
  26. 26.
    Cantel, S., Brunel, L., Ohara, K., Enjalbal, C., Martinez, J., Vasseur, J.-J., Smietana, M.: An innovative strategy for sulfopeptides analysis using MALDI-TOF MS reflectron positive ion mode. Proteomics 12, 2247–2257 (2012)CrossRefGoogle Scholar
  27. 27.
    Yu, Y., Hoffhines, A.J., Moore, K.L., Leary, J.A.: Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat. Methods 4, 583–588 (2007)CrossRefGoogle Scholar
  28. 28.
    Kim, J.-S., Song, S.-U., Kim, H.-J.: Simultaneous identification of tyrosine phosphorylation and sulfation sites utilizing tyrosine-specific bromination. J. Am. Soc. Mass Spectrom. 22, 1916–1925 (2011)CrossRefGoogle Scholar
  29. 29.
    Drake, S.K., Hortin, G.L.: Improved detection of intact tyrosine sulfate-containing peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in linear negative ion mode. Int. J. Biochem. Cell Biol. 42, 174–179 (2010)CrossRefGoogle Scholar
  30. 30.
    Edelson-Averbukh, M., Shevchenko, A., Pipkorn, R., Lehmann, W.: Discrimination between peptide O-sulfo- and O-phosphotyrosine residues by negative ion mode electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 2256–2268 (2011)CrossRefGoogle Scholar
  31. 31.
    Gibson, B.W., Cohen, P.: Liquid secondary ion mass spectrometry of phosphorylated and sulfated peptides and proteins. In: McCloskey, J.A. (ed.) Methods in enzymology, pp. 480–501. Academic Press, New York (1990).Google Scholar
  32. 32.
    Cook, S., Jackson, G.: Metastable Atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode. J. Am. Soc. Mass Spectrom. 22, 1088–1099 (2011)CrossRefGoogle Scholar
  33. 33.
    Hersberger, K.E., Håkansson, K.: Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation. Anal. Chem. 84, 6370–6377 (2012)CrossRefGoogle Scholar
  34. 34.
    Brodbelt, J.S.: Shedding light on the frontier of photodissociation. J. Am. Soc. Mass Spectrom. 22, 197–206 (2011)CrossRefGoogle Scholar
  35. 35.
    Ly, T., Julian, R.R.: Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics. Angew. Chem. Int. Ed. 48, 7130–7137 (2009)CrossRefGoogle Scholar
  36. 36.
    Reilly, J.P.: Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom. Rev. 28, 425–447 (2009)CrossRefGoogle Scholar
  37. 37.
    Madsen, J.A., Boutz, D.R., Brodbelt, J.S.: Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows. J. Proteome Res. 9, 4205–4214 (2010)CrossRefGoogle Scholar
  38. 38.
    Madsen, J.A., Kaoud, T.S., Dalby, K.N., Brodbelt, J.S.: 193-nm photodissociation of singly and multiply charged peptide anions for acidic proteome characterization. Proteomics 11, 1329–1334 (2011)CrossRefGoogle Scholar
  39. 39.
    Madsen, J.A., Xu, H., Robinson, M.R., Horton, A.P., Shaw, J.B., Giles, D.K., Kaoud, T.S., Dalby, K.N., Trent, M.S., Brodbelt, J.S.: High-throughput database search and large-scale negative polarity LC-MS/MS with ultraviolet photodissociation for complex proteomic samples. Mol. Cell. Proteomics 12, 2604–2614 (2013)CrossRefGoogle Scholar
  40. 40.
    Shaw, J., Madsen, J., Xu, H., Brodbelt, J.: Systematic comparison of ultraviolet photodissociation and electron transfer dissociation for peptide anion characterization. J. Am. Soc. Mass Spectrom. 23, 1707–1715 (2012)CrossRefGoogle Scholar
  41. 41.
    Madsen, J.A., Ko, B.J., Robotham, S.A., Xu, H., Horton, A.P., Iwashkiw, J.A., Shaw, J.B., Feldman, M.F., Brodbelt, J.S.: Concurrent automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions. Anal. Chem. 85, 9253–9261 (2013)CrossRefGoogle Scholar
  42. 42.
    Han, S.-W., Lee, S.-W., Bahar, O., Schwessinger, B., Robinson, M.R., Shaw, J.B., Madsen, J.A., Brodbelt, J.S., Ronald, P.C.: Tyrosine sulfation in a Gram-negative bacterium. Nat. Commun. 3, 1153 (2012)CrossRefGoogle Scholar
  43. 43.
    Vasicek, L., Ledvina, A., Shaw, J., Griep-Raming, J., Westphall, M., Coon, J., Brodbelt, J.: Implementing photodissociation in an Orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 22, 1105–1108 (2011)CrossRefGoogle Scholar
  44. 44.
    Shaw, J.B., Li, W., Holden, D.D., Zhang, Y., Griep-Raming, J., Fellers, R.T., Early, B.P., Thomas, P.M., Kelleher, N.L., Brodbelt, J.S.: Complete protein characterization using top-down mass spectrometry and ultraviolet photodissociation. J. Am. Chem. Soc. 135, 12646–12651 (2013)CrossRefGoogle Scholar
  45. 45.
    Xu, H., Freitas, M.: A mass accuracy sensitive probability based scoring algorithm for database searching of tandem mass spectrometry data. BMC Bioinforma. 8, 133 (2007)CrossRefGoogle Scholar
  46. 46.
    Xu, H., Yang, L., Freitas, M.: A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time. BMC Bioinforma. 9, 347 (2008)CrossRefGoogle Scholar
  47. 47.
    Xu, H., Freitas, M.A.: MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 9, 1548–1555 (2009)CrossRefGoogle Scholar
  48. 48.
    Xu, H., Freitas, M.A.: Monte Carlo simulation-based algorithms for analysis of shotgun proteomic data. J. Proteome Res. 7, 2605–2615 (2008)CrossRefGoogle Scholar
  49. 49.
    Yagami, T., Kitagawa, K., Aida, C., Fujiwara, H., Futaki, S.: Stabilization of a tyrosine O-sulfate residue by a cationic functional group: formation of a conjugate acid–base pair. J. Peptide Res. 56, 239–249 (2000)CrossRefGoogle Scholar
  50. 50.
    Antoine, R., Joly, L., Tabarin, T., Broyer, M., Dugourd, P., Lemoine, J.: Photo-induced formation of radical anion peptides. Electron photodetachment dissociation experiments. Rapid Commun. Mass Spectrom. 21, 265–268 (2007)CrossRefGoogle Scholar
  51. 51.
    Rumachik, N., McAlister, G., Russell, J., Bailey, D., Wenger, C., Coon, J.: Characterizing peptide neutral losses induced by negative electron-transfer dissociation (NETD). J. Am. Soc. Mass Spectrom. 23, 718–727 (2012)CrossRefGoogle Scholar
  52. 52.
    Sun, Q., Nelson, H., Ly, T., Stoltz, B.M., Julian, R.R.: Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J. Proteome Res. 8, 958–966 (2008)CrossRefGoogle Scholar
  53. 53.
    Straub, R.F., Voyksner, R.D.: Negative ion formation in electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 578–587 (1993)CrossRefGoogle Scholar
  54. 54.
    Yamashita, M., Fenn, J.B.: Negative ion production with the electrospray ion source. J. Phys. Chem. 88, 4671–4675 (1984)CrossRefGoogle Scholar
  55. 55.
    Hiraoka, K., Kudaka, I.: Negative-mode electrospray-mass spectrometry using nonaqueous solvents. Rapid Commun. Mass Spectrom. 6, 265–268 (1992)CrossRefGoogle Scholar
  56. 56.
    Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2001)CrossRefGoogle Scholar
  57. 57.
    Zhang, X., Clausen, M.R., Zhao, X., Zheng, H., Bertram, H.C.: Enhancing the power of liquid chromatography-mass spectrometry-based urine metabolomics in negative ion mode by optimization of the additive. Anal. Chem. 84, 7785–7792 (2012)CrossRefGoogle Scholar
  58. 58.
    McAlister, G.C., Russell, J.D., Rumachik, N.G., Hebert, A.S., Syka, J.E.P., Geer, L.Y., Westphall, M.S., Pagliarini, D.J., Coon, J.J.: Analysis of the acidic proteome with negative electron-transfer dissociation mass spectrometry. Anal. Chem. 84, 2875–2882 (2012)CrossRefGoogle Scholar
  59. 59.
    Balsved, D., Bundgaard, J.R., Sen, J.W.: Stability of tyrosine sulfate in acidic solutions. Anal. Biochem. 363, 70–76 (2007)CrossRefGoogle Scholar
  60. 60.
    Balderrama, G.D., Meneses, E.P., Orihuela, L.H., Hernández, O.V., Franco, R.C., Robles, V.P., Batista, C.V.F.: Analysis of sulfated peptides from the skin secretion of the Pachymedusa dacnicolor frog using IMAC-Ga enrichment and high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 25, 1017–1027 (2011)CrossRefGoogle Scholar
  61. 61.
    Amano, Y., Shinohara, H., Sakagami, Y., Matsubayashi, Y.: Ion-selective enrichment of tyrosine-sulfated peptides from complex protein digests. Anal. Biochem. 346, 124–131 (2005)CrossRefGoogle Scholar
  62. 62.
    Hoffhines, A.J., Damoc, E., Bridges, K.G., Leary, J.A., Moore, K.L.: Detection and purification of tyrosine-sulfated proteins using a novel anti-sulfotyrosine monoclonal antibody. J. Biol. Chem. 281, 37877–37887 (2006)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Michelle R. Robinson
    • 1
  • Kevin L. Moore
    • 2
    • 3
  • Jennifer S. Brodbelt
    • 1
  1. 1.Department of ChemistryThe University of Texas at AustinAustinUSA
  2. 2.Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahoma CityUSA
  3. 3.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations