Fluorine Bonding Enhances the Energetics of Protein-Lipid Binding in the Gas Phase

  • Lan Liu
  • Nobar Jalili
  • Alyson Baergen
  • Simon Ng
  • Justin Bailey
  • Ratmir Derda
  • John S. Klassen
Research Article

Abstract

This paper reports on the first experimental study of the energies of noncovalent fluorine bonding in a protein-ligand complex in the absence of solvent. Arrhenius parameters were measured for the dissociation of gaseous deprotonated ions of complexes of bovine β-lactoglobulin (Lg), a model lipid-binding protein, and four fluorinated analogs of stearic acid (SA), which contained (X =) 13, 15, 17, or 21 fluorine atoms. In all cases, the activation energies (Ea) measured for the loss of neutral XF-SA from the (Lg + XF-SA)7– ions are larger than for SA. From the kinetic data, the average contribution of each > CF2 group to Ea was found to be ~1.1 kcal mol–1, which is larger than the ~0.8 kcal mol–1 value reported for > CH2 groups. Based on these results, it is proposed that fluorocarbon–protein interactions are inherently stronger (enthalpically) than the corresponding hydrocarbon interactions.

Key words

Protein-ligand complexes Fluorine bonding Hydrophobic interactions Molecular recognition Energetics 

Supplementary material

13361_2014_837_MOESM1_ESM.doc (2.7 mb)
ESM 1(DOC 2763 kb)

References

  1. 1.
    Banks, R.E., Smart, B.E., Tatlow, J.C.: Organofluorine chemistry: principles and commercial applications. Plenum Press, New York (1994)CrossRefGoogle Scholar
  2. 2.
    Clader, J.W.: The discovery of ezetimibe: a view from outside the receptor. J Med Chem 47, 1–9 (2004)CrossRefGoogle Scholar
  3. 3.
    Hugel, H.M., Jackson, N.: Special feature organo-fluorine chemical science. Appl Sci 2, 558–565 (2012)CrossRefGoogle Scholar
  4. 4.
    Gunduz, M., Argikar, U.A., Kamel, A., Colizza, K., Bushee, J., Cirello, A., Lombardo, F., Harriman, S.: Oxidative ipso substitution of 2,4-difluoro-benzylphthalazines: identification of a rare stable quinone methide and subsequent GSH conjugate. Drug Metab Dispos 40, 2074–2080 (2012)CrossRefGoogle Scholar
  5. 5.
    Vasdev, N., Dorff, P.N., O’Neil, J.P., Chin, F.T., Hanrahan, S., Van Brocklin, H.F.: Metabolic stability of 6,7-dialkoxy-4-(2-,3-and 4-[18f] fluoroanilino) quinazolines, potential EGFR imaging probes. Bioorg Med Chem 19, 2959–2965 (2011)CrossRefGoogle Scholar
  6. 6.
    Böhm, H., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U., Stahl, M.: Fluorine in medicinal chemistry. Chem Bio Chem 5, 637–643 (2004)CrossRefGoogle Scholar
  7. 7.
    Kim, C., Chang, J.S., Doyon, J.B., Baird Jr., T.T., Fierke, C.A., Jain, A., Christianson, D.W.: Contribution of fluorine to protein–ligand affinity in the binding of fluoroaromatic inhibitors to carbonic anhydrase II. J Am Chem Soc 122, 12125–12134 (2000)CrossRefGoogle Scholar
  8. 8.
    Rendine, S., Pieraccini, S., Forni, A., Sironi, M.: Halogen bonding in ligand–receptor systems in the framework of classical force fields. Phys Chem Chem Phys 13, 19508–19516 (2011)CrossRefGoogle Scholar
  9. 9.
    Benitex, Y., Baranger, A.M.: Control of the stability of a protein Baranger, A.: M RNA complex by the position of fluorine in a base analogue. J Am Chem Soc 133, 3687–3689 (2011)CrossRefGoogle Scholar
  10. 10.
    Lee, Y., Zeng, H., Ruedisser, S., Gossert, A.D., Hilty, C.: Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein–ligand interactions. J Am Chem Soc 134, 17448–17451 (2012)CrossRefGoogle Scholar
  11. 11.
    Zhou, P., Zou, J., Tian, F., Shang, Z.: Fluorine bonding—how does it work in protein–ligand interactions. J Chem Inf Model 49, 2344–2355 (2009)CrossRefGoogle Scholar
  12. 12.
    Kuhn, B., Kollman, P.A.: A ligand that is predicted to bind better to avidin than biotin: insights from computational fluorine scanning. J Am Chem Soc 122, 3909–3916 (2000)CrossRefGoogle Scholar
  13. 13.
    Kawahara, S., Tsuzuki, S., Uchimaru, T.: Theoretical study of the C-F/π interaction: attractive interaction between fluorinated alkane and an electron-deficient π–system. J Phys Chem A 108, 6744–6749 (2004)Google Scholar
  14. 14.
    Riley, K.E., Merz, K.M.: Effects of fluorine substitution on the edge-to-face interaction of the benzene dimer. J Phys Chem B 109, 17752–17756 (2005)CrossRefGoogle Scholar
  15. 15.
    Chopra, D., Nagarajan, K., Row, T.N.G.: Analysis of weak interactions involving organic fluorine: insights from packing features in substituted 4-keto-tetrahydroindoles. J Mol Struct 888, 70–83 (2008)CrossRefGoogle Scholar
  16. 16.
    Iwaoka, M., Komatsu, H., Katsuda, T., Tomoda, S.: Quantitative evaluation of weak nonbonded Se•••F interactions and their remarkable nature as orbital interactions. J Am Chem Soc 124, 1902–1909 (2002)Google Scholar
  17. 17.
    Matta, C.F., Castillo, N., Boyd, R.J.: Characterization of a closed-shell fluorine-fluorine bonding interaction in aromatic compounds on the basis of the electron density. J Phys Chem A 109, 3669–3681 (2005)CrossRefGoogle Scholar
  18. 18.
    Lee, S., Mallik, A.B., Fredrickson, D.C.: Dipolar–dipolari nteractions and the crystal packing of nitriles, ketones, aldehydes, and C(sp2)-F groups. Cryst Growth Des 4, 279–290 (2004)CrossRefGoogle Scholar
  19. 19.
    Olsen, J.A., Banner, D.W., Seiler, P., Sander, U.O., D’Arcy, A., Stihle, M., Müller, K., Diederich, F.: A fluorine scan of thrombin inhibitors to map the fluorophilicity/fluorophobicity of an enzyme reactive site: evidence for C-F · · · C = O interactions. Angew Chem Int Ed 42, 2507–2511 (2003)CrossRefGoogle Scholar
  20. 20.
    Plenio, H.: The coordination chemistry of fluorine in fluorocarbons. Chem. Bio Chem. 5, 650–655 (2004)CrossRefGoogle Scholar
  21. 21.
    Bettinger, H.F.: How good is fluorine as a hydrogen-bond acceptor in fluorinated single-walled carbon nanotubes? Chem Phys Chem 6, 1169–1174 (2005)CrossRefGoogle Scholar
  22. 22.
    Müller, K., Faeh, C., Diederich, F.: Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007)CrossRefGoogle Scholar
  23. 23.
    Mecinović, J., Snyder, P.W., Mirica, K.A., Bai, S., Mack, E.T., Kwant, R.L., Moustakas, D.T., Héroux, A., Whitesides, G.M.: Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the “hydrophobic wall” of carbonic anhydrase. J Am Chem Soc 133, 14017–14026 (2011)CrossRefGoogle Scholar
  24. 24.
    Kontopidis, G., Holt, C., Sawyer, L.: Beta-lactoglobulin: binding properties, structure, and function. J Dairy Sci 87, 785–796 (2004)CrossRefGoogle Scholar
  25. 25.
    Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, H.M., Baker, E.N., Jameson, G.B.: Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry 37, 14014–14023 (1998)CrossRefGoogle Scholar
  26. 26.
    Dunbar, R.C., McMahon, T.B.: Activation of unimolecular reactions by ambient blackbody radiation. Science 279, 194–197 (1998)CrossRefGoogle Scholar
  27. 27.
    Price, W.D., Schnier, P.D., Jockusch, R.A., Strittmatter, E.R., Williams, E.R.: Unimolecular reactions kinetics in the high-pressure limit without collisions. J Am Chem Soc 118, 10640–10644 (1996)CrossRefGoogle Scholar
  28. 28.
    Liu, L., Bagal, D., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Hydrophobic protein-ligand interactions preserved in the gas phase. J Am Chem Soc 131, 15980–15981 (2009)CrossRefGoogle Scholar
  29. 29.
    Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem Inform 4, 17 (2012)Google Scholar
  30. 30.
    Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J.C., Cieplak, P., Dupradeau, F.-Y.: R.E.D. server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39, W511–W517 (2011)CrossRefGoogle Scholar
  31. 31.
    Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., Cieplak, P.: The R.E.D. tools: advances in RESP and ESP charge derivation and force feld library building. Phys Chem Chem Phys 12, 7821–7839 (2010)CrossRefGoogle Scholar
  32. 32.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima,T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr, Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT (2009)Google Scholar
  33. 33.
    Wu, S.Y., Perez, M.D., Puyol, P., Sawyer, L.: β-lactoglobulin binds palmitate within its central cavity. J Biol Chem 274, 170–174 (1999)CrossRefGoogle Scholar
  34. 34.
    Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Goetz, A.W., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Wolf, R.M., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe D.R., Mathews D.H., Seetin M.G., Salomon-Ferrer, R., Sagui, C., Babin V., Luchko, T., Gusarov, S., Kovalenko A., Kollman, P.A.: AMBER 12 University of California: San Francisco (2012)Google Scholar
  35. 35.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J Comput Chem 26, 1781–1802 (2005)CrossRefGoogle Scholar
  36. 36.
    Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development of testing of a general amber force field. J Comput Chem 25, 1157–1174 (2004)CrossRefGoogle Scholar
  37. 37.
    Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23, 327–341 (1977)CrossRefGoogle Scholar
  38. 38.
    Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J Molec Graphics 14(1), 33–38 (1996)CrossRefGoogle Scholar
  39. 39.
    Origin: OriginLab, Northampton, MA 01060, USAGoogle Scholar
  40. 40.
    Sun, J., Kitova, E.N., Klassen, J.S.: Method for stabilizing protein–ligand complexes in nanoelectrospray ionization mass spectrometry. Anal Chem 79, 416–425 (2007)CrossRefGoogle Scholar
  41. 41.
    Bagal, D., Kitova, E.N., Liu, L., El-Haweit, A., Schnier, P.D., Klassen, J.S.: Gas phase stabilization of noncovalent protein complexes formed by electrospray ionization. Anal Chem 81, 7801–7806 (2009)CrossRefGoogle Scholar
  42. 42.
    Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Energetics of lipid binding in a hydrophobic protein cavity. J Am Chem Soc 134, 3054–3060 (2012)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Lan Liu
    • 1
  • Nobar Jalili
    • 1
  • Alyson Baergen
    • 1
  • Simon Ng
    • 1
  • Justin Bailey
    • 1
  • Ratmir Derda
    • 1
  • John S. Klassen
    • 1
  1. 1.Alberta Glycomics Centre and Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations