Inclusion Complexes of Ionic Liquids and Cyclodextrins: Are They Formed in the Gas Phase?

  • Ana M. Fernandes
  • Bernd Schröder
  • Tânia Barata
  • Mara G. Freire
  • João A. P. Coutinho
Research Article


The interaction of imidazolium-based ionic liquids with α- and β-cyclodextrins was investigated by electrospray ionization mass spectrometry with variable collision induced dissociation energy and quantum chemical gas-phase calculations. The center-of-mass energy at which 50 % of a precursor ion decomposes (Ecm,1/2) was determined for the isolated [cyclodextrin + cation]+ or [cyclodextrin + anion] adduct ions of imidazolium-based ionic liquids with different alkyl chain lengths combined with a large set of anions, such as chloride, bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, methanesulfonate, dicyanamide, and hydrogensulfate. Moreover, both symmetric and asymmetric imidazolium cationic cores were evaluated. The relative interaction energies in the adduct ions were interpreted in terms of the influence of cation/anion structures and their inherent properties, such as hydrophobicity and hydrogen bond accepting ability, in the complexation process with the cyclodextrins. The trends observed in the mass spectral data together with quantum-chemical calculations suggest that in the gas phase, cations and anions will preferentially interact with the lower or upper rim of the cyclodextrin, respectively, as opposed to what has been reported in condensed phase where the formation of an inclusion complex between ionic liquid and cyclodextrin is assumed.


Ionic liquids Cyclodextrin Inclusion Electrospray-ionization Collision-induced-dissociation Electronic-structure calculations 



Thanks are due to Fundação para a Ciência e a Tecnologia (FCT, Portugal) and European Union, QREN, FEDER, and COMPETE for funding the QOPNA research unit (project PEst-C/QUI/UI0062/2011) and CICECO (Pest-C/CTM/LA0011/2011). B.S. acknowledges the award of a FCT post-doctoral grant (SFRH/BPD/38637/2007) and the FCT project (PTDC/AAC-AMB/121161/2010). T.B. acknowledges a FCT BII grant, M.G.F. acknowledges a FCT post-doctoral grant SFRH/BPD/41781/2007.

Supplementary material

13361_2013_820_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1.13 MB)


  1. 1.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  2. 2.
    Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1358 (1997)CrossRefGoogle Scholar
  3. 3.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)CrossRefGoogle Scholar
  4. 4.
    Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)CrossRefGoogle Scholar
  5. 5.
    Handy, S.T.: Room temperature ionic liquids: different classes and physical properties. Curr. Org. Chem. 9, 959–988 (2005)CrossRefGoogle Scholar
  6. 6.
    Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)CrossRefGoogle Scholar
  7. 7.
    Smiglak, M., Metlen, A., Rogers, R.D.: The second evolution of ionic liquids: from solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook. Acc. Chem. Res. 40, 1182–1192 (2007)CrossRefGoogle Scholar
  8. 8.
    Hough, W.L., Smiglak, M., Rodriguez, H., Swatloski, R.P., Spear, S.K., Daly, D.T., Pernak, J., Grisel, J.E., Carliss, R.D., Soutullo, M.D., Davis, J.H., Rogers, R.D.: The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem. 31, 1429–1436 (2007)CrossRefGoogle Scholar
  9. 9.
    Gao, Y., Zhao, X., Dong, B., Zheng, L., Li, N., Zhang, S.: Inclusion complexes of β-cyclodextrin with ionic liquid surfactans. J. Phys. Chem. B 110, 8576–8581 (2006)CrossRefGoogle Scholar
  10. 10.
    Gao, Y., Li, Z., Du, J., Han, B., Li, G., Hou, W., Shen, D., Zheng, L., Zhang, G.: Preparation and characterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chem. Eur. J. 11, 5875–5880 (2005)CrossRefGoogle Scholar
  11. 11.
    François, Y., Varenne, A., Sirieix-Plenet, J., Garell, P.: Determination of aqueous inclusion complexation constants and stoichiometry of alkyl(methyl)-methylimidazolium-based ionic liquid cations and neutral cyclodextrins by affinity capillary electrophoresis. J. Sep. Sci. 30, 751–760 (2007)CrossRefGoogle Scholar
  12. 12.
    Amajjahe, S., Ritter, H.: Anion complexation of vinylimidazolium salts and its influence on polymerization. Macromolecules 41, 716–718 (2008)CrossRefGoogle Scholar
  13. 13.
    Amajjahe, S., Ritter, H.: Supramolecular controlled pseudo-LCST effects of cyclodextrin-complexed poly(ionic liquids). Macromolecules 41, 3250–3253 (2008)CrossRefGoogle Scholar
  14. 14.
    He, Y., Shen, X.: Interaction between β-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. J. Photochem. Photobiol., A 197, 253–259 (2008)CrossRefGoogle Scholar
  15. 15.
    He, Y., Chen, Q., Xu, C., Zhang, J., Shen, X.: Interaction between ionic liquids and β-cyclodextrin: a discussion of association pattern. J. Phys. Chem. B 113, 231–238 (2009)CrossRefGoogle Scholar
  16. 16.
    Ondo, D., Tkadlecová, M., Dohnal, V., Rak, J., Kvícala, J., Lehmann, J.K., Heintz, A., Ignatiev, N.: Interaction of ionic liquids with natural cyclodextrins. J. Phys. Chem. B 115, 10285–10297 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Shen, X.: Multiple equilibria interaction pattern between the ionic liquids CnmimPF6 and β-cyclodextrin in aqueous solutions. J. Phys. Chem. B 115, 11852–11861 (2011)CrossRefGoogle Scholar
  18. 18.
    Rak, J., Ondo, D., Tkadlecová, M., Dohnal, V.: On the interaction of ionic liquid 1-butyl-3-methylimidazolium hexafluorophophate with β-cyclodextrin in aqueous solutions. Z. Phys. Chem. 224, 893–906 (2010)CrossRefGoogle Scholar
  19. 19.
    Subramaniam, P., Mohamad, S., Alias, Y.: Synthesis and characterization of the inclusion complex of dicationic ionic liquid and β-cyclodextrin. Int. J. Mol. Sci. 11, 3675–3685 (2010)CrossRefGoogle Scholar
  20. 20.
    Mohamad, S., Surikumaran, H., Raoov, M., Marimuthu, T., Chandrasekaram, K., Subramaniam, P.: Conventional study on novel dicationic ionic liquid inclusion with β-cyclodextrin. Int. J. Mol. Sci. 12, 6329–6345 (2011)CrossRefGoogle Scholar
  21. 21.
    Jiao, D., Biedermann, F., Tian, F., Scherman, O.A.: A systems approach to controlling supramolecular architecture and emergent solution properties via host–guest complexation in water. J. Am. Chem. Soc. 132, 15734–15743 (2010)CrossRefGoogle Scholar
  22. 22.
    Zheng, Y., Xuan, X., Wang, J., Fan, M.: The enhanced dissolution of β-cyclodextrin in some hydrophilic ionic liquids. J. Phys. Chem. A 114, 3926–3931 (2010)CrossRefGoogle Scholar
  23. 23.
    Brodbelt, J.S.: Probing molecular recognition by mass spectrometry. Int. J. Mass Spectrom. 200, 57–69 (2000)CrossRefGoogle Scholar
  24. 24.
    Schalley, C.A.: Supramolecular chemistry goes gas phase: the mass spectrometric examination of noncovalent interactions in host–guest chemistry and molecular recognition. Int. J. Mass Spectrom. 194, 11–39 (2000)CrossRefGoogle Scholar
  25. 25.
    Schalley, C.A.: Molecular recognition and supramolecular chemistry in the gas phase. Mass Spectrom. Rev. 20, 253–309 (2001)CrossRefGoogle Scholar
  26. 26.
    Baytekin, B., Bayetkin, H.T., Schalley, C.A.: Mass spectrometric studies of noncovalent compounds: why supramolecular chemistry in the gas phase? Org. Biomol. Chem. 4, 2825–2841 (2006)CrossRefGoogle Scholar
  27. 27.
    Cunniff, J.B., Vouros, P.: False positives and the detection of cyclodextrin inclusion complexes by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 6, 437–447 (1995)CrossRefGoogle Scholar
  28. 28.
    Lebrilla, C.B.: The gas-phase chemistry of cyclodextrin inclusion complexes. Acc. Chem. Res. 34, 653–661 (2001)CrossRefGoogle Scholar
  29. 29.
    Gabelica, V., Galic, N., De Pauw, E.: On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 946–953 (2002)CrossRefGoogle Scholar
  30. 30.
    Barylyuk, K., Balabin, R.M., Grünstein, D., Kikkeri, R., Frankevich, V., Seeberger, P.H., Zenobi, R.: What happens to hydrophobic interactions during transfer from the solution to the gas phase? The case of electrospray-based soft ionization methods. J. Am. Soc. Mass Spectrom. 22, 1167–1177 (2011)CrossRefGoogle Scholar
  31. 31.
    Sharon, M., Robinson, C.V.: A quantitative perspective on hydrophobic interactions in the gas phase. Curr. Proteom. 8, 47–58 (2011)CrossRefGoogle Scholar
  32. 32.
    David, W.M., Brodbelt, J.S.: Threshold dissociation energies of protonated amine/polyether complexes in a quarupole ion trap. J. Am. Soc. Mass Spectrom. 14, 383–392 (2003)CrossRefGoogle Scholar
  33. 33.
    Crowe, M.C., Brodbelt, J.S.: Evaluation of noncovalent interactions between peptides and polyether compounds via energy-variable collisionally activated dissociation. J. Am. Soc. Mass Spectrom. 14, 1148–1157 (2003)CrossRefGoogle Scholar
  34. 34.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J.: Gaussian 03, rev. D.02. I. Gaussian Inc, Wallingford, CT (2004)Google Scholar
  35. 35.
    Stachowicz, A., Styrcz, A., Korchowiec, J., Modaressi, A., Rogalski, M.: DFT studies of cation binding by ß-cyclodextrin. Theor. Chem. Accounts 130, 939–953 (2011)CrossRefGoogle Scholar
  36. 36.
    Lindner, K., Saenger, W.: Topography of cyclodextrin complexes. Part XVII. Crystal and molecular structure of cycloheptaamylose dodecahydrate. Carbohydr. Res. 99, 103–115 (1982)CrossRefGoogle Scholar
  37. 37.
    Simon, S., Duran, M., Dannenberg, J.J.: How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 105, 11024–11031 (1996)CrossRefGoogle Scholar
  38. 38.
    Boys, S.F., Bernardi, F.: The Calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)CrossRefGoogle Scholar
  39. 39.
    Memboeuf, A., Nasioudis, A., Pollreisz, F., Kuki, A., Kéki, S., van den Brink, O.F., Vékey, K., Drahos, L.: Size effect on fragmentation in tandem mass spectrometry. Anal. Chem. 82, 2294–2302 (2010)CrossRefGoogle Scholar
  40. 40.
    Gabelica, V., De Pauw, E.: Comparison between solution phase stability and gas-phase kinetic stability of oligodeoxynucleotide duplexes. J. Mass Spectrom. 36, 397–402 (2001)CrossRefGoogle Scholar
  41. 41.
    Cho, C., Preiss, U., Jungnickel, C., Stolte, S., Arning, J., Ranke, J., Klamt, A., Krossing, I., Thöming, J.: Ionic liquids: predictions of physicochemical properties with experimental and/or DFT-calculated LEER parameters to understand molecular interactions in solution. J. Phys. Chem. 115, 6040–6050 (2011)CrossRefGoogle Scholar
  42. 42.
    Lungwitz, R., Spange, S.: A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J. Chem. 32, 392–394 (2008)CrossRefGoogle Scholar
  43. 43.
    Wojclk, J.F., Rohrbach, R.P.: Small anion binding to cycloamylose equilibrium constants. J. Phys. Chem. 79, 2251–2253 (1975)CrossRefGoogle Scholar
  44. 44.
    Rohrbach, R.P., Rodriguez, L.J., Eyring, E.M., Wojclk, J.F.: An equilibrium and kinetic investigation of salt-cycloamylose complexes. J. Phys. Chem. 81, 944–948 (1977)CrossRefGoogle Scholar
  45. 45.
    Gelb, R.I., Schwartz, L.M., Radeos, M., Laufer, D.A.: Cycloamylose complexation of inorganic anions. J. Phys. Chem. 87, 3349–3353 (1983)CrossRefGoogle Scholar
  46. 46.
    Buvári, A., Barcza, L.: Complex formation of inorganic salts with β-cyclodextrin. J. Incl. Phenom. Mol. 7, 379–389 (1989)CrossRefGoogle Scholar
  47. 47.
    Godinez, L.A., Schulze-Fiehn, B.G., Patel, S., Criss, C.M., Evanseck, J.D., Kaifer, A.E.: Observation and interpretation of anomalous inorganic anion binding with α- and β-cyclodextrins in aqueous media. Supramol. Chem. 8, 17–22 (1996)CrossRefGoogle Scholar
  48. 48.
    Yi, Z., Zhao, C., Huang, Z., Chen, H., Yu, J.: Investigation of buffer-cyclodextrin systems. Phys. Chem. Chem. Phys. 1, 441–444 (1999)CrossRefGoogle Scholar
  49. 49.
    Fu, Y., Liu, L., Guo, Q.: A theoretical study on the inclusion complexation of cyclodextrins with inorganic cations and anions. J. Incl. Phenom. 43, 223–229 (2002)CrossRefGoogle Scholar
  50. 50.
    Rekharsky, M., Yoshihisa, I.: Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-β-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and Coulombic interactions. J. Am. Chem. Soc. 124, 813–826 (2002)CrossRefGoogle Scholar
  51. 51.
    Rodriguez, J., Elola, M.D.: Encapsulation of small ionic molecules within α-cyclodextrins. J. Phys. Chem. B 113, 1423–1428 (2009)CrossRefGoogle Scholar
  52. 52.
    Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)CrossRefGoogle Scholar
  53. 53.
    Lee, S.J.C., Lee, J.W., Lee, H.L., Seo, J., Noh, D.H., Ko, Y.H., Kim, K., Kim, H.I.: Host–guest chemistry from solution to the gas phase: an essential role of direct interaction with water for high-affinity binding of cucurbit[n]urils. J. Phys. Chem. 117, 8855–8864 (2013)CrossRefGoogle Scholar
  54. 54.
    Buschmann, H., Mutihac, L., Schollmeyer, E.: Thermodynamic data for the complex formation of alkylamines and their hydrochlorides with α-cyclodextrin in aqueous solution. J. Incl. Phenom. 51, 53–57 (2005)CrossRefGoogle Scholar
  55. 55.
    Rekharsky, M.V., Mayhew, M.P., Goldberg, R.N., Ross, P.D., Yamashoji, Y., Inoue, Y.: Thermodynamic and nuclear magnetic resonance study of the reactions of α- and β-cyclodextrin with acids, aliphatic amines, and cyclic alcohols. J. Phys. Chem. B 101, 87–100 (1997)CrossRefGoogle Scholar
  56. 56.
    Castronuovo, G., Elia, V., Velleca, F., Viscardi, G.: Thermodynamics of the Interaction of α-cyclodextrin with α, ω-dicarboxylic acids in aqueous solutions. A calorimetric study at 25 °C. Thermochim. Acta 292, 31–37 (1997)CrossRefGoogle Scholar
  57. 57.
    Qu, X., Zhu, L., Li, L., Wei, X., Liu, F., Sun, D.: Host–guest complexation of β-, γ-cyclodextrin with alkyl trimethyl ammonium bromides in aqueous solution. J. Solution Chem. 36, 643–650 (2007)CrossRefGoogle Scholar
  58. 58.
    Odinokov, A.V., Titov, S.V., Tikhomirov, V.A., Basilevsky, M.V., Alfimov, M.V.: Inclusion complexes of β-cyclodextrin with organic ligands: molecular dynamics simulation of the thermodynamic stability in gas phase and in water solution. Mol. Simul. 39, 442–452 (2013)CrossRefGoogle Scholar
  59. 59.
    Spencer, J.N., He, Q., Ke, X., Wu, Z., Fetter, E.: Complexation of inorganic anions and small organic molecules with α-cyclodextrin in water. J. Solut. Chem. 27, 1009–1019 (1998)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Ana M. Fernandes
    • 1
  • Bernd Schröder
    • 2
  • Tânia Barata
    • 1
  • Mara G. Freire
    • 2
  • João A. P. Coutinho
    • 2
  1. 1.Departamento de Química, QOPNAUniversidade de AveiroAveiroPortugal
  2. 2.Departamento de Química, CICECOUniversidade de AveiroAveiroPortugal

Personalised recommendations