Advertisement

Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

  • Scott B. Ficarro
  • Jessica M. Biagi
  • Jinhua Wang
  • Jenna Scotcher
  • Rositsa I. Koleva
  • Joseph D. Card
  • Guillaume Adelmant
  • Huan He
  • Manor Askenazi
  • Alan G. Marshall
  • Nicolas L. Young
  • Nathanael S. Gray
  • Jarrod A. MartoEmail author
Research Article

Abstract

We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.

Key words

Mass spectrometry LC-MS MS/MS FTMS Fourier transform mass spectrometry Ion cyclotron resonance Time-of-flight mass spectrometry Isotopologue Nuclear binding energy 

Notes

Acknowledgments

The authors thank Dr. Michael Senko at ThermoFisher Scientific for providing modified ITCL code and guidance to enable acquisition of extended length time domain transients with the Orbitrap XL instrument. Generous financial support for this work was provided by the Susan Smith Center for Women’s Cancers and the Strategic Research Initiative at the Dana-Farber Cancer Institute, in addition to the National Institutes of Health, P01NS047572 (to J.A.M.) and HG006097-03 (to N.S.G). This work was also supported by the National Science Foundation Division of Materials Research through DMR-11-57490 (to A.G.M) and the State of Florida.

Supplementary material

13361_2013_811_MOESM1_ESM.pdf (909 kb)
ESM 1 (PDF 908 kb)

References

  1. 1.
    Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B.: Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007)CrossRefGoogle Scholar
  2. 2.
    Pan, S., Aebersold, R.: Quantitative proteomics by stable isotope labeling and mass spectrometry. Methods Mol. Biol. 367, 209–218 (2007)Google Scholar
  3. 3.
    Schreiber, T.B., Mausbacher, N., Breitkopf, S.B., Grundner-Culemann, K., Daub, H.: Quantitative phosphoproteomics—an emerging key technology in signal-transduction research. Proteomics 8, 4416–4432 (2008)CrossRefGoogle Scholar
  4. 4.
    Ramisetty, S.R., Washburn, M.P.: Unraveling the dynamics of protein interactions with quantitative mass spectrometry. Crit. Rev. Biochem. Mol. Biol. 46, 216–228 (2011)CrossRefGoogle Scholar
  5. 5.
    Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., Mann, M.: Stable isotope labeling by amino acids in cell culture, silac, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 1, 376–386 (2002)CrossRefGoogle Scholar
  6. 6.
    McClatchy, D.B., Dong, M.Q., Wu, C.C., Venable, J.D., Yates III, J.R.: 15n Metabolic labeling of mammalian tissue with slow protein turnover. J. Proteome Res. 6, 2005–2010 (2007)CrossRefGoogle Scholar
  7. 7.
    McClatchy, D.B., Liao, L., Park, S.K., Venable, J.D., Yates, J.R.: Quantification of the Synaptosomal Proteome of the Rat Cerebellum During Post-Natal Development. Genome Res. 17, 1378–1388 (2007)CrossRefGoogle Scholar
  8. 8.
    Hao, P., Ren, Y., Alpert, A.J., Sze, S.K.: Detection, evaluation and minimization of nonenzymatic deamidation in proteomic sample preparation. Mol. Cell. Proteom. 10, O111 009381 (2011)Google Scholar
  9. 9.
    Ulbrich, A., Merrill, A.E., Hebert, A.S., Westphall, M.S., Keller, M.P., Attie, A.D., Coon, J.J.: Neutron-encoded protein quantification by peptide carbamylation. J. Am. Soc. Mass Spectrom. 25, 6–9 (2014)Google Scholar
  10. 10.
    Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., Aebersold, R.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999)CrossRefGoogle Scholar
  11. 11.
    Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D.J.: Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 3, 1154–1169 (2004)CrossRefGoogle Scholar
  12. 12.
    Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K., Hamon, C.: Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003)CrossRefGoogle Scholar
  13. 13.
    Palaniappan, K.K., Pitcher, A.A., Smart, B.P., Spiciarich, D.R., Iavarone, A.T., Bertozzi, C.R.: Isotopic signature transfer and mass pattern prediction (Isostamp): an enabling technique for chemically-directed proteomics. ACS Chem. Biol. 6, 829–836 (2011)CrossRefGoogle Scholar
  14. 14.
    Choe, L., D’Ascenzo, M., Relkin, N.R., Pappin, D., Ross, P., Williamson, B., Guertin, S., Pribil, P., Lee, K.H.: 8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for alzheimer’s disease. Proteomics 7, 3651–3660 (2007)CrossRefGoogle Scholar
  15. 15.
    Mertins, P., Udeshi, N.D., Clauser, K.R., Mani, D.R., Patel, J., Ong, S.E., Jaffe, J.D., Carr, S.A.: Itraq Labeling is superior to mtraq for quantitative global proteomics and phosphoproteomics. Mol. Cell. Proteom. 11, M111 014423 (2012)Google Scholar
  16. 16.
    Ting, L., Rad, R., Gygi, S.P., Haas, W.: MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat. Methods 8, 937–940 (2011)CrossRefGoogle Scholar
  17. 17.
    Ow, S.Y., Salim, M., Noirel, J., Evans, C., Rehman, I., Wright, P.C.: Itraq underestimation in simple and complex mixtures: “the good, the bad and the ugly.”. J. Proteome Res. 8, 5347–5355 (2009)CrossRefGoogle Scholar
  18. 18.
    Wenger, C.D., Lee, M.V., Hebert, A.S., McAlister, G.C., Phanstiel, D.H., Westphall, M.S., Coon, J.J.: Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat. Methods 8, 933–935 (2011)CrossRefGoogle Scholar
  19. 19.
    Blank, L.M., Desphande, R.R., Schmid, A., Hayen, H.: Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13c- and 15n-labeled substrates simultaneously. Anal. Bioanal. Chem. 403, 2291–2305 (2012)CrossRefGoogle Scholar
  20. 20.
    Marto, J.A.: Protected amine labels and use in detecting analytes. WO/2011/047192 (2011). Patent application number: 20120258886, 11 October 2012Google Scholar
  21. 21.
    Hebert, A.S., Merrill, A.E., Stefely, J.A., Bailey, D.J., Wenger, C.D., Westphall, M.S., Pagliarini, D.J., Coon, J.J.: Amine-reactive neutron-encoded labels for highly plexed proteomic quantitation. Mol. Cell. Proteom. 12, 3360–3369 (2013)CrossRefGoogle Scholar
  22. 22.
    Werner, T., Becher, I., Sweetman, G., Doce, C., Savitski, M.M., Bantscheff, M.: High-resolution enabled tmt 8-plexing. Anal. Chem. 84, 7188–7194 (2012)CrossRefGoogle Scholar
  23. 23.
    McAlister, G.C., Huttlin, E.L., Haas, W., Ting, L., Jedrychowski, M.P., Rogers, J.C., Kuhn, K., Pike, I., Grothe, R.A., Blethrow, J.D., Gygi, S.P.: Increasing the multiplexing capacity of tmts using reporter ion isotopologues with isobaric masses. Anal. Chem. 84, 7469–7478 (2012)CrossRefGoogle Scholar
  24. 24.
    Zhou, Y., Shan, Y., Wu, Q., Zhang, S., Zhang, L., Zhang, Y.: Mass defect-based pseudo-isobaric dimethyl labeling for proteome quantification. Anal. Chem. 85, 10658–10663 (2013)Google Scholar
  25. 25.
    Hebert, A.S., Merrill, A.E., Bailey, D.J., Still, A.J., Westphall, M.S., Strieter, E.R., Pagliarini, D.J., Coon, J.J.: Neutron-encoded mass signatures for multiplexed proteome quantification. Nat. Methods 10, 332–334 (2013)CrossRefGoogle Scholar
  26. 26.
    Rose, C.M., Merrill, A.E., Bailey, D.J., Hebert, A.S., Westphall, M.S., Coon, J.J.: Neutron encoded labeling for peptide identification. Anal. Chem. 85, 5129–5137 (2013)CrossRefGoogle Scholar
  27. 27.
    Meiring, H.D., van der Heeft, E., ten Hove, G.J., de Jong, A.: “Nanoscale LC-MS(N): technical design and applications to peptide and protein analysis. J. Sep. Sci. 25, 557–568 (2002)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Wolf-Yadlin, A., Ross, P.L., Pappin, D.J., Rush, J., Lauffenburger, D.A., White, F.M.: Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteom. 4, 1240–1250 (2005)CrossRefGoogle Scholar
  29. 29.
    Everley, R.A., Kunz, R.C., McAllister, F.E., Gygi, S.P.: Increasing throughput in targeted proteomics assays: 54-plex quantitation in a single mass spectrometry run. Anal. Chem. 85, 5340–5346 (2013)CrossRefGoogle Scholar
  30. 30.
    Dong, F., van Buitenen, C., Pouwels, K., Hoefsloot, L.H., Lowenberg, B., Touw, I.P.: Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol. Cell. Biol. 13, 7774–7781 (1993)Google Scholar
  31. 31.
    Hermans, M.H., Ward, A.C., Antonissen, C., Karis, A., Lowenberg, B., Touw, I.P.: Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood 92, 32–39 (1998)Google Scholar
  32. 32.
    Maun, N.A., Gaines, P., Khanna-Gupta, A., Zibello, T., Enriquez, L., Goldberg, L., Berliner, N.: G-Csf signaling can differentiate promyelocytes expressing a defective retinoic acid receptor: evidence for divergent pathways regulating neutrophil differentiation. Blood 103, 1693–1701 (2004)CrossRefGoogle Scholar
  33. 33.
    Metcalf, D.: Hematopoietic cytokines. Blood 111, 485–491 (2008)CrossRefGoogle Scholar
  34. 34.
    Hercus, T.R., Thomas, D., Guthridge, M.A., Ekert, P.G., King-Scott, J., Parker, M.W., Lopez, A.F.: The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114, 1289–1298 (2009)CrossRefGoogle Scholar
  35. 35.
    Pazdrak, K., Young, T.W., Stafford, S., Olszewska-Pazdrak, B., Straub, C., Starosta, V., Brasier, A., Kurosky, A.: Cross-talk between Icam-1 and granulocyte-macrophage colony-stimulating factor receptor signaling modulates eosinophil survival and activation. J. Immunol. 180, 4182–4190 (2008)Google Scholar
  36. 36.
    Touw, I.P., De Koning, J.P., Ward, A.C., Hermans, M.H.: Signaling mechanisms of cytokine receptors and their perturbances in disease. Mol. Cell. Endocrinol. 160, 1–9 (2000)CrossRefGoogle Scholar
  37. 37.
    Ward, A.C., Loeb, D.M., Soede-Bobok, A.A., Touw, I.P., Friedman, A.D.: Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 14, 973–990 (2000)CrossRefGoogle Scholar
  38. 38.
    Ficarro, S.B., Adelmant, G., Tomar, M.N., Zhang, Y., Cheng, V.J., Marto, J.A.: Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal. Chem. 81, 4566–4575 (2009)CrossRefGoogle Scholar
  39. 39.
    Ficarro, S.B., Zhang, Y., Carrasco-Alfonso, M.J., Garg, B., Adelmant, G., Webber, J.T., Luckey, C.J., Marto, J.A.: Online Nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Mol. Cell. Proteom. 10, O111 011064 (2011)Google Scholar
  40. 40.
    Bendall, S.C., Simonds, E.F., Qiu, P., el Amir, A.D., Krutzik, P.O., Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., Balderas, R.S., Plevritis, S.K., Sachs, K., Pe’er, D., Tanner, S.D., Nolan, G.P.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011)CrossRefGoogle Scholar
  41. 41.
    Tanaka, S., Saito, Y., Kunisawa, J., Kurashima, Y., Wake, T., Suzuki, N., Shultz, L.D., Kiyono, H., Ishikawa, F.: Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted nod/scid/il2rgammako mice. J. Immunol. 188, 6145–6155 (2012)CrossRefGoogle Scholar
  42. 42.
    Piu, F., Magnani, M., Ader, M.E.: Dissection of the cytoplasmic domains of cytokine receptors involved in stat and ras dependent proliferation. Oncogene 21, 3579–3591 (2002)CrossRefGoogle Scholar
  43. 43.
    Linding, R., Jensen, L.J., Ostheimer, G.J., van Vugt, M.A., Jorgensen, C., Miron, I.M., Diella, F., Colwill, K., Taylor, L., Elder, K., Metalnikov, P., Nguyen, V., Pasculescu, A., Jin, J., Park, J.G., Samson, L.D., Woodgett, J.R., Russell, R.B., Bork, P., Yaffe, M.B., Pawson, T.: Systematic discovery of in vivo phosphorylation networks. Cell 129, 1415–1426 (2007)CrossRefGoogle Scholar
  44. 44.
    Schaub, T.M., Hendrickson, C.L., Horning, S., Quinn, J.P., Senko, M.W., Marshall, A.G.: High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. Anal. Chem. 80, 3985–3990 (2008)Google Scholar
  45. 45.
    Tipton, J.D., Tran, J.C., Catherman, A.D., Ahlf, D.R., Durbin, K.R., Lee, J.E., Kellie, J.F., Kelleher, N.L., Hendrickson, C.L., Marshall, A.G.: Nano-LC FTICR tandem mass spectrometry for top-down proteomics: Routine Baseline Unit Mass Resolution of Whole Cell Lysate Proteins up to 72 KDa. Anal. Chem. 84, 2111–2117 (2012)CrossRefGoogle Scholar
  46. 46.
    Chen, L., Cottrell, C.E., Marshall, A.G.: Effect of signal-to-noise ratio and number of data points upon precision in measurement of peak amplitude, position and width in Fourier transform spectrometry. Chemometr. Intell. Lab. 1, 51–58 (1986)CrossRefGoogle Scholar
  47. 47.
    Marshall, A.G.: Theoretical signal-to-noise ratio and mass resolution in Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 51, 1710–1714 (1979)Google Scholar
  48. 48.
    Zhang, Y., Ficarro, S.B., Li, S., Marto, J.A.: Optimized Orbitrap HCD for quantitative analysis of phosphopeptides. J. Am. Soc. Mass Spectrom. 20, 1425–1434 (2009)CrossRefGoogle Scholar
  49. 49.
    Rizzo, J.M., Buck, M.J.: Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev. Res. (Phila) 5, 887–900 (2012)Google Scholar
  50. 50.
    Ecker, J.R.: Forum: genomics encode explained. Nature 489, 52–53 (2012)CrossRefGoogle Scholar
  51. 51.
    Consortium, E.P., Bernstein, B.E., Birney, E., Dunham, I., Green, E.D., Gunter, C., Snyder, M.: An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012)CrossRefGoogle Scholar
  52. 52.
    Link, A.J.: Multidimensional peptide separations in proteomics. Trends Biotechnol. 20, S8–S13 (2002)CrossRefGoogle Scholar
  53. 53.
    Di Palma, S., Hennrich, M.L., Heck, A.J., Mohammed, S.: Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J. Proteom. 75, 3791–3813 (2012)CrossRefGoogle Scholar
  54. 54.
    Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)CrossRefGoogle Scholar
  55. 55.
    Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)CrossRefGoogle Scholar
  56. 56.
    Michalski, A., Damoc, E., Lange, O., Denisov, E., Nolting, D., Muller, M., Viner, R., Schwartz, J., Remes, P., Belford, M., Dunyach, J.J., Cox, J., Horning, S., Mann, M., Makarov, A.: Ultra high resolution linear ion trap Orbitrap Mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol. Cell. Proteom. 11, O111 013698 (2012)Google Scholar
  57. 57.
    Makarov, A., Denisov, E., Lange, O.: Performance evaluation of a high-field orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1391–1396 (2009)CrossRefGoogle Scholar
  58. 58.
    Michalski, A., Damoc, E., Hauschild, J.P., Lange, O., Wieghaus, A., Makarov, A., Nagaraj, N., Cox, J., Mann, M., Horning, S.: Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol. Cell Proteom. 10, M111 011015 (2011)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Scott B. Ficarro
    • 1
    • 2
    • 3
  • Jessica M. Biagi
    • 1
    • 2
  • Jinhua Wang
    • 1
    • 3
  • Jenna Scotcher
    • 4
  • Rositsa I. Koleva
    • 1
    • 3
  • Joseph D. Card
    • 1
    • 2
  • Guillaume Adelmant
    • 1
    • 2
    • 3
  • Huan He
    • 4
    • 5
  • Manor Askenazi
    • 1
    • 2
    • 3
    • 6
  • Alan G. Marshall
    • 4
    • 5
  • Nicolas L. Young
    • 4
  • Nathanael S. Gray
    • 1
    • 3
  • Jarrod A. Marto
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Cancer BiologyDana-Farber Cancer InstituteBostonUSA
  2. 2.Blais Proteomics CenterDana-Farber Cancer InstituteBostonUSA
  3. 3.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  4. 4.Ion Cyclotron Resonance Program, National High Magnetic Field LaboratoryTallahasseeUSA
  5. 5.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA
  6. 6.Department of Biological ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations