Energy-Resolved Ion Mobility-Mass Spectrometry—A Concept to Improve the Separation of Isomeric Carbohydrates

  • Waldemar Hoffmann
  • Johanna Hofmann
  • Kevin Pagel
Research Article


Recent works using ion mobility-mass spectrometry (IM-MS) have highlighted the power of this instrumental configuration to tackle one of the greatest challenges in glycomics and glycoproteomics: the existence of isobaric isomers. For a successful separation of species with identical mass but different structure via IM-MS, it is crucial to have sufficient IM resolution. In commercially available IM-MS instruments, however, this resolution is limited by the design of the instrument and usually cannot be increased at-will without extensive modifications. Here, we present a systematic approach to improve the resolving capability of IM-MS instruments using so-called energy-resolved ion mobility-mass spectrometry. The technique utilizes the fact that individual components in an isobaric mixture fragment at considerably different energies when activated in the gas phase via collision-induced dissociation (CID). As a result, certain components can be suppressed selectively at increased CID activation energy. Using a mixture of four isobaric carbohydrates, we show that each of the individual sugars can be resolved and unambiguously identified even when their drift times differ by as little as 3 %. However, the presented results also indicate that a certain difference in the gas-phase stability of the individual components is crucial for a successful separation via energy-resolved IM-MS.

Key words

Ion mobility mass spectrometry Carbohydrates Isomeric mixtures Collision-induced dissociation Travelling wave IM-MS 



The authors thank the Fritz Haber Institute of the Max Planck Society and, in particular, Professor Gerard Meijer and Professor Matthias Scheffler for financial support. Furthermore, Weston B. Struwe and Gert von Helden are gratefully acknowledged for critical reading of the manuscript and fruitful discussions.

Supplementary material

13361_2013_780_MOESM1_ESM.pdf (634 kb)
ESM 1 (PDF 634 kb)


  1. 1.
    Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996)CrossRefGoogle Scholar
  2. 2.
    Alley, W.R., Mann, B.F., Novotny, M.V.: High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem. Rev. 113, 2668–2732 (2013)CrossRefGoogle Scholar
  3. 3.
    Kolarich, D., Lepenies, B., Seeberger, P.H.: Glycomics, glycoproteomics, and the immune system. Curr. Opin. Chem. Biol. 16, 214–220 (2012)CrossRefGoogle Scholar
  4. 4.
    Kleene, R., Schachner, M.: Glycans and neural cell interactions. Nat. Rev. Neurosci. 5, 195–208 (2004)CrossRefGoogle Scholar
  5. 5.
    Varki, A.: Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007)CrossRefGoogle Scholar
  6. 6.
    Molinari, M.: N-glycan structure dictates extension of protein folding or onset of disposal. Nat. Chem. Biol. 3, 313–320 (2007)CrossRefGoogle Scholar
  7. 7.
    Pabst, M., Altmann, F.: Glycan analysis by modern instrumental methods. Proteomics 11, 631–643 (2011)CrossRefGoogle Scholar
  8. 8.
    Marino, K., Bones, J., Kattla, J.J., Rudd, P.M.: A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010)CrossRefGoogle Scholar
  9. 9.
    Bertozzi, C.R., Rabuka, D.: Structural Basis of Glycan Diversity. In: Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.) Essentials of Glycobiology, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2009)Google Scholar
  10. 10.
    Rakus, J.F., Mahal, L.K.: New technologies for glycomic analysis: toward a systematic understanding of the glycome. Annu. Rev. Anal. Chem. 4, 367–392 (2011)CrossRefGoogle Scholar
  11. 11.
    Guile, G.R., Rudd, P.M., Wing, D.R., Prime, S.B., Dwek, R.A.: A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem. 240, 210–226 (1996)CrossRefGoogle Scholar
  12. 12.
    Zaia, J.: Mass spectrometry and the emerging field of glycomics. Chem. Biol. 15, 881–892 (2008)CrossRefGoogle Scholar
  13. 13.
    Zaia, J.: Mass spectrometry and glycomics. OMICS. J. Integrative Biol. 14, 401–418 (2010)CrossRefGoogle Scholar
  14. 14.
    Harvey, D.J.: Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. J. Mass Spectrom. 35, 1178–1190 (2000)CrossRefGoogle Scholar
  15. 15.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 1. Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 16, 622–630 (2005)CrossRefGoogle Scholar
  16. 16.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 631–646 (2005)CrossRefGoogle Scholar
  17. 17.
    Harvey, D.: Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 647–659 (2005)CrossRefGoogle Scholar
  18. 18.
    Mechref, Y., Novotny, M.V., Krishnan, C.: Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal. Chem. 75, 4895–4903 (2003)CrossRefGoogle Scholar
  19. 19.
    Harvey, D.J., Bateman, R.H., Green, M.R.: High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 32, 167–187 (1997)CrossRefGoogle Scholar
  20. 20.
    Stephens, E., Maslen, S.L., Green, L.G., Williams, D.H.: Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 76, 2343–2354 (2004)CrossRefGoogle Scholar
  21. 21.
    Han, L., Costello, C.E.: Electron transfer dissociation of milk oligosaccharides. J. Am. Soc. Mass Spectrom. 22, 997–1013 (2011)CrossRefGoogle Scholar
  22. 22.
    Sheeley, D.M., Reinhold, V.N.: Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole ion trap mass spectrometer: neutral oligosaccharides and N-linked glycans. Anal. Chem. 70, 3053–3059 (1998)CrossRefGoogle Scholar
  23. 23.
    Viseux, N., de Hoffmann, E., Domon, B.: Structural assignment of permethylated oligosaccharide subunits using sequential tandem mass spectrometry. Anal. Chem. 70, 4951–4959 (1998)CrossRefGoogle Scholar
  24. 24.
    Weiskopf, A.S., Vouros, P., Harvey, D.J.: Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Anal. Chem. 70, 4441–4447 (1998)CrossRefGoogle Scholar
  25. 25.
    Ashline, D., Singh, S., Hanneman, A., Reinhold, V.: Congruent Strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Anal. Chem 77, 6250–6262 (2005)CrossRefGoogle Scholar
  26. 26.
    Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H., Reinhold, V.N.: The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20, 539–556 (2009)CrossRefGoogle Scholar
  27. 27.
    Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H.: Ion mobility-mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008)CrossRefGoogle Scholar
  28. 28.
    Plasencia, M.D., Isailovic, D., Merenbloom, S.I., Mechref, Y., Clemmer, D.E.: Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J. Am. Soc. Mass Spectrom. 19, 1706–1715 (2008)CrossRefGoogle Scholar
  29. 29.
    Bohrer, B.C., Merenbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1, 293–327 (2008)CrossRefGoogle Scholar
  30. 30.
    Williams, J.P., Grabenauer, M., Holland, R.J., Carpenter, C.J., Wormald, M.R., Giles, K., Harvey, D.J., Bateman, R.H., Scrivens, J.H., Bowers, M.T.: Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass Spectrom. 298, 119–127 (2010)CrossRefGoogle Scholar
  31. 31.
    Fenn, L.S., McLean, J.A.: Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys. Chem., Chem. Phys 13, 2196–2205 (2011)CrossRefGoogle Scholar
  32. 32.
    Clowers, B.H., Dwivedi, P., Steiner, W.E., Hill Jr., H.H., Bendiak, B.: Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 660–669 (2005)CrossRefGoogle Scholar
  33. 33.
    Zhu, M., Bendiak, B., Clowers, B., Hill Jr., H.H.: Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal. Bioanal. Chem. 394, 1853–1867 (2009)CrossRefGoogle Scholar
  34. 34.
    Pringle, S.D., Giles, K., Wildgoose, J.L., Williams, J.P., Slade, S.E., Thalassinos, K., Bateman, R.H., Bowers, M.T., Scrivens, J.H.: An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261, 1–12 (2007)CrossRefGoogle Scholar
  35. 35.
    Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of a traveling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18, 2401–2414 (2004)CrossRefGoogle Scholar
  36. 36.
    Li, H., Bendiak, B., Siems, W.F., Gang, D.R., Hill Jr., H.H.: Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)2. Anal. Chem. 85, 2760–2769 (2013)CrossRefGoogle Scholar
  37. 37.
    Lee, S., Li, Z., Valentine, S.J., Zucker, S.M., Webber, N., Reilly, J.P., Clemmer, D.E.: Extracted fragment ion mobility distributions: A new method for complex mixture analysis. Int. J. Mass Spectrom. 309, 154–160 (2012)Google Scholar
  38. 38.
    Zhu, F., Lee, S., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Mannose7 glycan isomer characterization by IMS-MS/MS analysis. J. Am. Soc. Mass Spectrom. 23, 2158–2166 (2012)CrossRefGoogle Scholar
  39. 39.
    Zekavat, B., Solouki, T.: Chemometric data analysis for deconvolution of overlapped ion mobility profiles. J. Am. Soc. Mass Spectrom. 23, 1873–1884 (2012)CrossRefGoogle Scholar
  40. 40.
    Zekavat, B., Miladi, M., Becker, C., Munisamy, S.M., Solouki, T.: Combined use of post-ion mobility/collision-induced dissociation and chemometrics for b fragment ion analysis. J. Am. Soc. Mass Spectrom. 24, 1355–1365 (2013)CrossRefGoogle Scholar
  41. 41.
    Hernandez, H., Robinson, C.V.: Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2, 715–726 (2007)CrossRefGoogle Scholar
  42. 42.
    Merenbloom, S.I., Flick, T.G., Williams, E.R.: How hot are your ions in TWAVE ion mobility spectrometry? J. Am. Soc. Mass Spectrom. 23, 553–562 (2012)CrossRefGoogle Scholar
  43. 43.
    Morsa, D., Gabelica, V., De Pauw, E.: Effective temperature of ions in traveling wave ion mobility spectrometry. Anal. Chem. 83, 5775–5782 (2011)CrossRefGoogle Scholar
  44. 44.
    Liu, Y., Clemmer, D.E.: Characterizing oligosaccharides using injected-ion mobility/mass spectrometry. Anal. Chem. 69, 2504–2509 (1997)CrossRefGoogle Scholar
  45. 45.
    Daikoku, S., Widmalm, G., Kanie, O.: Analysis of a series of isomeric oligosaccharides by energy-resolved mass spectrometry: a challenge on homobranched trisaccharides. Rapid Commun. Mass Spectrom. 23, 3713–3719 (2009)CrossRefGoogle Scholar
  46. 46.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J. 5, 397–409 (1988)CrossRefGoogle Scholar
  47. 47.
    Cancilla, M.T., Penn, S.G., Carroll, J.A., Lebrilla, C.B.: Coordination of Alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization/fourier transform mass spectrometry. J. Am. Chem. Soc. 118, 6736–6745 (1996)CrossRefGoogle Scholar
  48. 48.
    Toyama, A., Nakagawa, H., Matsuda, K., Sato, T.-A., Nakamura, Y., Ueda, K.: Quantitative structural characterization of local N-glycan microheterogeneity in therapeutic antibodies by energy-resolved oxonium ion monitoring. Anal. Chem. 84, 9655–9662 (2012)CrossRefGoogle Scholar
  49. 49.
    Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689–9699 (2008)CrossRefGoogle Scholar
  50. 50.
    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in traveling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)CrossRefGoogle Scholar
  51. 51.
    Zucker, S.M., Lee, S., Webber, N., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: An ion mobility/ion trap/photodissociation instrument for characterization of ion structure. J. Am. Soc. Mass Spectrom. 22, 1477–1485 (2011)CrossRefGoogle Scholar
  52. 52.
    Huang, Y., Dodds, E.D.: Ion mobility studies of carbohydrates as group i adducts: isomer specific collisional cross section dependence on metal ion radius. Anal. Chem. 85, 9728–9735 (2013)CrossRefGoogle Scholar
  53. 53.
    Pagel, K., Harvey, D.J.: Ion mobility mass spectrometry of complex carbohydrates—collision cross sections of sodiated N-linked glycans. Anal. Chem. 85, 5138–5145 (2013)CrossRefGoogle Scholar
  54. 54.
    Harvey, D.J., Scarff, C.A., Edgeworth, M., Crispin, M., Scanlan, C.N., Sobott, F., Allman, S., Barauh, K., Pritchard, L., Scrivens, J.H.: Traveling wave ion mobility and negative ion fragmentation for the structural determination of N-linked glycans. Electrophoresis 34, 2368–2378 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Waldemar Hoffmann
    • 1
  • Johanna Hofmann
    • 1
  • Kevin Pagel
    • 1
  1. 1.Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyBerlinGermany

Personalised recommendations