Advertisement

Evidence for Sequence Scrambling and Divergent H/D Exchange Reactions of Doubly-Charged Isobaric b-Type Fragment Ions

  • Behrooz Zekavat
  • Mahsan Miladi
  • Abdullah H. Al-Fdeilat
  • Arpad Somogyi
  • Touradj Solouki
Research Article

Abstract

To date, only a limited number of reports are available on structural variants of multiply-charged b-fragment ions. We report on observed bimodal gas-phase hydrogen/deuterium exchange (HDX) reaction kinetics and patterns for substance P b10 2+ that point to presence of isomeric structures. We also compare HDX reactions, post-ion mobility/collision-induced dissociation (post-IM/CID), and sustained off-resonance irradiation-collision induced dissociation (SORI-CID) of substance P b10 2+ and a cyclic peptide with an identical amino acid (AA) sequence order to substance P b10. The observed HDX patterns and reaction kinetics and SORI-CID pattern for the doubly charged head-to-tail cyclized peptide were different from either of the presumed isomers of substance P b10 2+, suggesting that b10 2+ may not exist exclusively as a head-to-tail cyclized structure. Ultra-high mass measurement accuracy was used to assign identities of the observed SORI-CID fragment ions of substance P b10 2+; over 30 % of the observed SORI-CID fragment ions from substance P b10 2+ had rearranged (scrambled) AA sequences. Moreover, post-IM/CID experiments revealed the presence of two conformer types for substance P b10 2+, whereas only one conformer type was observed for the head-to-tail cyclized peptide. We also show that AA sequence scrambling from CID of doubly-charged b-fragment ions is not unique to substance P b10 2+.

Key words

b-Fragment FT-ICR Gas-phase H/D exchange (HDX) Kinetics Sequence scrambling Post-IM/CID SORI-CID 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Institute for Therapeutic Discovery (Delanson, NY, USA) and Baylor University.

Supplementary material

13361_2013_768_MOESM1_ESM.docx (4.6 mb)
ESM 1 (DOCX 4664 kb)

References

  1. 1.
    McCormack, A.L., Schieltz, D.M., Goode, B., Yang, S., Barnes, G., Drubin, D., Yates, J.R.: Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal. Chem. 69, 767–776 (1997)CrossRefGoogle Scholar
  2. 2.
    Bogdanov, B., Smith, R.D.: Proteomics by FTICR mass spectrometry: top-down and bottom-up. Mass Spectrom. Rev. 24, 168–200 (2005)CrossRefGoogle Scholar
  3. 3.
    Kelleher, N.L.: Top-down proteomics. Anal. Chem. 76, 197A–203A (2004)CrossRefGoogle Scholar
  4. 4.
    McLafferty, F.W.: Collisional activation mass spectra. Phil. Trans. R. Soc. Lond. A 293, 93–102 (1979)CrossRefGoogle Scholar
  5. 5.
    Little, D.P., Speir, J.P., Senko, M.W., O’Connor, P.B., McLafferty, F.W.: Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 66, 2809–2815 (1994)CrossRefGoogle Scholar
  6. 6.
    Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)CrossRefGoogle Scholar
  7. 7.
    Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)CrossRefGoogle Scholar
  8. 8.
    Eriksson, J., Chait, B.T., Fenyo, D.: A statistical basis for testing the significance of mass spectrometric protein identification results. Anal. Chem. 72, 999–1005 (2000)CrossRefGoogle Scholar
  9. 9.
    Fenyo, D.: Identifying the proteome: software tools. Curr. Opin. Biotechnol. 11, 391–395 (2000)CrossRefGoogle Scholar
  10. 10.
    Palagi, P.M., Hernandez, P., Walther, D., Appel, R.D.: Proteome informatics I: bioinformatics tools for processing experimental data. Proteomics 6, 5435–5444 (2006)CrossRefGoogle Scholar
  11. 11.
    Tang, X.J., Boyd, R.K.: Rearrangements of doubly charged acylium ions from lysyl and ornithyl peptides. Rapid Commun. Mass Spectrom. 8, 678–686 (1994)CrossRefGoogle Scholar
  12. 12.
    Yague, J., Paradela, A., Ramos, M., Ogueta, S., Marina, A., Barahona, F., Lopez de Castro, J.A., Vazquez, J.: Peptide rearrangement during quadrupole ion trap fragmentation: added complexity to MS/MS spectra. Anal. Chem. 75, 1524–1535 (2003)CrossRefGoogle Scholar
  13. 13.
    Harrison, A.G., Young, A.B., Bleiholder, C., Suhai, S., Paizs, B.: Scrambling of sequence information in collision-induced dissociation of peptides. J. Am. Chem. Soc. 128, 10364–10365 (2006)CrossRefGoogle Scholar
  14. 14.
    Bleiholder, C., Osburn, S., Williams, T.D., Suhai, S., Van Stipdonk, M., Harrison, A.G., Paizs, B.: Sequence-scrambling fragmentation pathways of protonated peptides. J. Am. Chem. Soc. 130, 17774–17789 (2008)CrossRefGoogle Scholar
  15. 15.
    Harrison, A.G.: Peptide sequence scrambling through cyclization of b5 ions. J. Am. Soc. Mass Spectrom. 19, 1776–1780 (2008)CrossRefGoogle Scholar
  16. 16.
    Erlekam, U., Bythell, B.J., Scuderi, D., Van Stipdonk, M., Paizs, B., Maitre, P.: Infrared spectroscopy of fragments of protonated peptides: direct evidence for macrocyclic structures of b5 ions. J. Am. Chem. Soc. 131, 11503–11508 (2009)CrossRefGoogle Scholar
  17. 17.
    Molesworth, S., Osburn, S., Van Stipdonk, M.: Influence of size on apparent scrambling of sequence during CID of b-type ions. J. Am. Soc. Mass Spectrom. 20, 2174–2181 (2009)CrossRefGoogle Scholar
  18. 18.
    Molesworth, S., Osburn, S., Van Stipdonk, M.: Influence of amino acid side chains on apparent selective opening of cyclic b5 ions. J. Am. Soc. Mass Spectrom. 21, 1028–1036 (2010)CrossRefGoogle Scholar
  19. 19.
    Molesworth, S.P., Van Stipdonk, M.J.: Apparent inhibition by arginine of macrocyclic b ion formation from singly charged protonated peptides. J. Am. Soc. Mass Spectrom. 21, 1322–1328 (2010)CrossRefGoogle Scholar
  20. 20.
    Harrison, A.G.: Cyclization of peptide b9 ions. J. Am. Soc. Mass Spectrom. 20, 2248–2253 (2009)CrossRefGoogle Scholar
  21. 21.
    Jia, C., Qi, W., He, Z.: Cyclization reaction of peptide fragment ions during multistage collisionally activated decomposition: an inducement to lose internal amino-acid residues. J. Am. Soc. Mass Spectrom. 18, 663–678 (2007)CrossRefGoogle Scholar
  22. 22.
    Fattahi, A., Solouki, T.: Conformational analysis of metal complexed model peptides and their fragment ions using FT-ICR MS and gas-phase H/D exchange reactions. Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics. Chicago, IL (May 2001)Google Scholar
  23. 23.
    Somogyi, A.: Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments. J. Am. Soc. Mass Spectrom. 19, 1771–1775 (2008)CrossRefGoogle Scholar
  24. 24.
    Chen, X., Yu, L., Steill, J.D., Oomens, J., Polfer, N.C.: Effect of peptide fragment size on the propensity of cyclization in collision-induced dissociation: oligoglycine b2-b8. J. Am. Chem. Soc. 131, 18272–18282 (2009)CrossRefGoogle Scholar
  25. 25.
    Perkins, B.R., Chamot-Rooke, J., Yoon, S.H., Gucinski, A.C., Somogyi, A., Wysocki, V.H.: Evidence of diketopiperazine and oxazolone structures for HA b2 + ion. J. Am. Chem. Soc. 131, 17528–17529 (2009)CrossRefGoogle Scholar
  26. 26.
    Fattahi, A., Zekavat, B., Solouki, T.: H/D exchange kinetics: experimental evidence for formation of different b-fragment ion conformers/isomers during the gas-phase peptide sequencing. J. Am. Soc. Mass Spectrom. 21, 358–369 (2010)CrossRefGoogle Scholar
  27. 27.
    Miladi, M., Zekavat, B., Munisamy, S.M., Solouki, T.: A systematic study on the effect of histidine position and fragment ion size on the formation of bn ions. Int. J. Mass Spectrom. 316/318, 164–173 (2012)CrossRefGoogle Scholar
  28. 28.
    Polfer, N.C., Bohrer, B.C., Plasencia, M.D., Paizs, B., Clemmer, D.E.: On the dynamics of fragment isomerization in collision-induced dissociation of peptides. J. Phys. Chem. A 112, 1286–1293 (2008)CrossRefGoogle Scholar
  29. 29.
    Riba-Garcia, I., Giles, K., Bateman, R.H., Gaskell, S.J.: Evidence for structural variants of a- and b-type peptide fragment ions using combined ion mobility/mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 609–613 (2008)CrossRefGoogle Scholar
  30. 30.
    Polfer, N.C., Oomens, J., Suhai, S., Paizs, B.: Infrared spectroscopy and theoretical studies on gas-phase protonated Leu-enkephalin and its fragments: direct experimental evidence for the mobile proton. J. Am. Chem. Soc. 129, 5887–5897 (2007)CrossRefGoogle Scholar
  31. 31.
    Tang, X.J., Thibault, P., Boyd, R.K.: Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Anal. Chem. 65, 2824–2834 (1993)CrossRefGoogle Scholar
  32. 32.
    Haselmann, K.F., Budnik, B.A., Zubarev, R.A.: Electron capture dissociation of b+2 peptide fragments reveals the presence of the acylium ion structure. Rapid Commun. Mass Spectrom. 14, 2242–2246 (2000)CrossRefGoogle Scholar
  33. 33.
    Li, X., Huang, Y., O’Connor, P.B., Lin, C.: Structural heterogeneity of doubly-charged peptide b-ions. J. Am. Soc. Mass Spectrom. 22, 245–254 (2011)CrossRefGoogle Scholar
  34. 34.
    Solouki, T., Zekavat, B., Miladi, M.: On the existence of structurally different isobaric bn fragment ions. Proceedings of the 58th ASMS Conference on Mass Spectrometry and Allied Topics. Salt Lake City, UT (May 2010)Google Scholar
  35. 35.
    Knapp-Mohammady, M., Young, A.B., Paizs, B., Harrison, A.G.: Fragmentation of doubly-protonated Pro-His-Xaa tripeptides: formation of b2 2+ ions. J. Am. Soc. Mass Spectrom. 20, 2135–2143 (2009)CrossRefGoogle Scholar
  36. 36.
    Senko, M.W., Beu, S.C., McLafferty, F.W.: High-resolution tandem mass spectrometry of carbonic anhydrase. Anal. Chem. 66, 415–418 (1994)CrossRefGoogle Scholar
  37. 37.
    Wang, T.C., Ricca, T.L., Marshall, A.G.: Extension of dynamic range in Fourier transform ion cyclotron resonance mass spectrometry via stored waveform inverse Fourier transform excitation. Anal. Chem. 58, 2935–2938 (1986)CrossRefGoogle Scholar
  38. 38.
    Gauthier, J.W., Trautman, T.R., Jacobson, D.B.: Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta. 246, 211–225 (1991)CrossRefGoogle Scholar
  39. 39.
    Jiao, C.Q., Ranatunga, D.R.A., Vaughn, W.E., Freiser, B.S.: A pulsed-leak valve for use with ion trapping mass spectrometers. J. Am. Soc. Mass Spectrom. 7, 118–122 (1996)CrossRefGoogle Scholar
  40. 40.
    Solouki, T., Szulejko, J.E.: Bimolecular and unimolecular contributions to the disparate self-chemical ionizations of alpha-pinene and camphene isomers. J. Am. Soc. Mass Spectrom. 18, 2026–2039 (2007)CrossRefGoogle Scholar
  41. 41.
    Gucinski, A.C., Somogyi, A., Chamot-Rooke, J., Wysocki, V.H.: Separation and identification of structural isomers by quadrupole collision-induced dissociation-hydrogen/deuterium exchange-infrared multiphoton dissociation (QCID-HDX-IRMPD). J. Am. Soc. Mass Spectrom. 21, 1329–1338 (2010)CrossRefGoogle Scholar
  42. 42.
    Zekavat, B., Solouki, T.: Chemometric data analysis for deconvolution of overlapped ion mobility profiles. J. Am. Soc. Mass Spectrom. 23, 1873–1884 (2012)CrossRefGoogle Scholar
  43. 43.
    Zekavat, B., Miladi, M., Becker, C., Munisamy, S.M., Solouki, T.: Combined use of post-ion mobility/collision-induced dissociation and chemometrics for b-fragment ion analysis. J. Am. Soc. Mass Spectrom. 24, 1355–1365 (2013)CrossRefGoogle Scholar
  44. 44.
    Miller, T.M.: Atomic and molecular polarizabilities. In: Lide, D.R., Frederikse, H.P.R. (eds.) CRC Handbook of Chemistry and Physics, 77 ed. pp. 193–202, vol. 10. CRC Press Inc., Baton Rouge, (1996/1997)Google Scholar
  45. 45.
    Bartmess, J.E., Georgiadis, R.M.: Empirical methods for determination of ionization gauge relative ensitivities for different gases. Vacuum 33, 149–153 (1983)CrossRefGoogle Scholar
  46. 46.
    Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Brown, A., Klassen, J.S.: Deuterium kinetic isotope effects on the dissociation of a protein-fatty acid complex in the gas phase. J. Am. Chem. Soc. 134, 5931–5937 (2012)CrossRefGoogle Scholar
  47. 47.
    Gorman, G.S., Speir, J.P., Turner, C.A., Amster, I.J.: Proton affinities of the 20 common α-amino acids. J. Am. Chem. Soc. 114, 3986–3988 (1992)CrossRefGoogle Scholar
  48. 48.
    Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom. 35, 1399–1406 (2000)CrossRefGoogle Scholar
  49. 49.
    Campbell, S., Rodgers, M.T., Marzluff, E.M., Beauchamp, J.L.: Deuterium exchange reactions as a probe of biomolecule structure. Fundamental studies of gas phase wd exchange reactions of protonated glycine oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 117, 12840–12854 (1995)Google Scholar
  50. 50.
    Atik, A.E., Gorgulu, G., Yalcin, T.: The role of lysine ε-amine group on the macrocyclization of b-ions. Int. J. Mass Spectrom. 316/318, 84–90 (2012)CrossRefGoogle Scholar
  51. 51.
    Sze, S.K., Ge, Y., Oh, H., McLafferty, F.W.: Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue. Proc. Natl. Acad. Sci. U. S. A. 99, 1774–1779 (2002)CrossRefGoogle Scholar
  52. 52.
    Gucinski, A.C., Chamot-Rooke, J., Nicol, E., Somogyi, A., Wysocki, V.H.: Structural influences on preferential oxazolone versus diketopiperazine b2 + ion formation for histidine analogue-containing peptides. J. Phys. Chem. A 116, 4296–4304 (2012)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Behrooz Zekavat
    • 1
  • Mahsan Miladi
    • 1
  • Abdullah H. Al-Fdeilat
    • 2
  • Arpad Somogyi
    • 3
  • Touradj Solouki
    • 1
  1. 1.Department of Chemistry and BiochemistryBaylor UniversityWacoUSA
  2. 2.Department of ChemistryUniversity of MaineOronoUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA

Personalised recommendations