A New Splitting Method for Both Analytical and Preparative LC/MS

  • Yi Cai
  • Daniel Adams
  • Hao Chen
Research Article


This paper presents a novel splitting method for liquid chromatography/mass spectrometry (LC/MS) application, which allows fast MS detection of LC-separated analytes and subsequent online analyte collection. In this approach, a PEEK capillary tube with a micro-orifice drilled on the tube side wall is used to connect with LC column. A small portion of LC eluent emerging from the orifice can be directly ionized by desorption electrospray ionization (DESI) with negligible time delay (6~10 ms) while the remaining analytes exiting the tube outlet can be collected. The DESI-MS analysis of eluted compounds shows narrow peaks and high sensitivity because of the extremely small dead volume of the orifice used for LC eluent splitting (as low as 4 nL) and the freedom to choose favorable DESI spray solvent. In addition, online derivatization using reactive DESI is possible for supercharging proteins and for enhancing their signals without introducing extra dead volume. Unlike UV detector used in traditional preparative LC experiments, this method is applicable to compounds without chromophores (e.g., saccharides) due to the use of MS detector. Furthermore, this splitting method well suits monolithic column-based ultra-fast LC separation at a high elution flow rate of 4 mL/min.

Key words

LC/MS Eluent splitting DESI Protein supercharging Ultra-fast LC 



The authors acknowledge support for this work by NSF Career Award (CHE-1149367).

Supplementary material

13361_2013_763_MOESM1_ESM.docx (659 kb)
ESM 1 (DOCX 658 kb)


  1. 1.
    Su, Z.H., Zou, G.A., Preiss, A., Zhang, H.W., Zou, Z.M.: Online identification of the antioxidant constituents of traditional Chinese medicine formula Chaihu-Shu-Gan-San by LC-LTQ Orbitrap mass spectrometry and microplate spectrophotometer. J. Pharmaceut. Biomed. Anal. 53, 454–461 (2010)CrossRefGoogle Scholar
  2. 2.
    Sangoi, M.S., Todeschini, V., Steppe, M.: Fesoterodine stress degradation behavior by liquid chromatography coupled to ultraviolet detection and electrospray ionization mass spectrometry. Talanta 84, 1068–1079 (2011)CrossRefGoogle Scholar
  3. 3.
    Schiavo, S., Ebbel, E., Sharma, S., Matson, W., Kristal, B.S., Hersch, S., Vouros, P.: Metabolite identification using a nanoelectrospray LC-EC-array-MS integrated system. Anal. Chem. 80, 5912–5923 (2008)CrossRefGoogle Scholar
  4. 4.
    Andrews, C.L., Li, F., Yang, E., Yu, C.-P., Vouros, P.: Incorporation of a nanosplitter interface into an LC-MS-RD system to facilitate drug metabolism studies. J. Mass Spectrom. 41, 43–49 (2006)CrossRefGoogle Scholar
  5. 5.
    Camenzuli, M., Goodie, T.A., Bassanese, D.N., Francis, P.S., Barnett, N.W., Ritchie, H., LaDine, J., Shalliker, R.A., Conlan, X.A.: The use of parallel segmented outlet flow columns for enhanced mass spectral sensitivity at high chromatographic flow rates. Rapid Commun. Mass Spectrom. 26, 943–949 (2012)CrossRefGoogle Scholar
  6. 6.
    Andrews, C.L., Yu, C.-P., Yang, E., Vouros, P.: Improved liquid chromatography-Mass spectrometry performance in quantitative analysis using a nanosplitter interface. J. Chromatogr. A 1053, 151–159 (2004)Google Scholar
  7. 7.
    Harris, G.A., Galhena, A.S., Fernandez, F.M.: Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83, 4508–4538 (2011)CrossRefGoogle Scholar
  8. 8.
    Douglass, K.A., Venter, A.R.: Protein analysis by desorption electrospray ionization mass spectrometry and related methods. J. Mass Spectrom. 48, 553–560 (2013)CrossRefGoogle Scholar
  9. 9.
    Zhang, S., Shin, Y.-S., Mayer, R., Basile, F.: On-probe pyrolysis desorption electrospray ionization (DESI) mass spectrometry for the analysis of non-volatile pyrolysis products. J. Anal. Appl. Pyrolysi. 80, 353–359 (2007)CrossRefGoogle Scholar
  10. 10.
    Chen, H., Talaty, N.N., Takats, Z., Cooks, R.G.: Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Anal. Chem. 77, 6915–6927 (2005)CrossRefGoogle Scholar
  11. 11.
    Wiseman, J.M., Ifa, D.R., Song, Q., Cooks, R.G.: Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. 45, 7188–7192 (2006)CrossRefGoogle Scholar
  12. 12.
    Laskin, J., Laskin, A., Roach, P.J., Slysz, G.W., Anderson, G.A., Nizkorodov, S.A., Bones, D.L., Nguyen, L.Q.: High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal. Chem. 82, 2048–2058 (2010)CrossRefGoogle Scholar
  13. 13.
    Kaur-Atwal, G., Weston, D.J., Green, P.S., Crosland, S., Bonner, P.L.R., Creaser, C.S.: Analysis of tryptic peptides using desorption electrospray ionisation combined with ion mobility spectrometry/mass spectrometry. Rapid Commun. Mass Spectrom. 21, 1131–1138 (2007)CrossRefGoogle Scholar
  14. 14.
    Denes, J., Katona, M., Hosszu, A., Czuczy, N., Takats, Z.: Analysis of biological fluids by direct combination of solid phase extraction and desorption electrospray ionization mass spectrometry. Anal. Chem. 81, 1669–1675 (2009)CrossRefGoogle Scholar
  15. 15.
    Bereman, M.S., Nyadong, L., Fernandez, F.M., Muddiman, D.C.: Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 20, 3409–3411 (2006)CrossRefGoogle Scholar
  16. 16.
    Miao, Z., Chen, H.: Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J. Am. Soc. Mass Spectrom. 20, 10–19 (2009)CrossRefGoogle Scholar
  17. 17.
    Moore, B.N., Hamdy, O., Julian, R.R.: Protein structure evolution in liquid DESI as revealed by selective noncovalent adduct protein probing. Int. J. Mass Spectrom. 330/332, 220–225 (2012)CrossRefGoogle Scholar
  18. 18.
    Miao, Z., Wu, S., Chen, H.: The study of protein conformation in solution via direct sampling by desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 1730–1736 (2010)CrossRefGoogle Scholar
  19. 19.
    Ma, X., Zhao, M., Lin, Z., Zhang, S., Yang, C., Zhang, X.: Versatile platform employing desorption electrospray ionization mass spectrometry for high-throughput analysis. Anal. Chem. 80, 6131–6136 (2008)CrossRefGoogle Scholar
  20. 20.
    Chipuk, J.E., Brodbelt, J.S.: Transmission mode desorption electrospray ionization. J. Am. Soc. Mass Spectrom. 19, 1612–1620 (2008)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Chen, H.: Detection of saccharides by reactive desorption electrospray ionization (DESI) using modified phenylboronic acids. Int. J. Mass Spectrom. 289, 98–107 (2010)CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Yuan, Z., Dewald, H.D., Chen, H.: Coupling of liquid chromatography with mass spectrometry by desorption electrospray ionization (DESI). Chem. Commun. 47, 4171–4173 (2011)CrossRefGoogle Scholar
  23. 23.
    Sun, X., Miao, Z., Yuan, Z., Harrington, P.B., Colla, J., Chen, H.: Coupling of single droplet micro-extraction with desorption electrospray ionization-mass spectrometry. Int. J. Mass Spectrom. 301, 102–108 (2011)CrossRefGoogle Scholar
  24. 24.
    Ferguson, C.N., Benchaar, S.A., Miao, Z., Loo, J.A., Chen, H.: Direct ionization of large proteins and protein complexes by desorption electrospray ionization-mass spectrometry. Anal. Chem. 83, 6468–6473 (2011)CrossRefGoogle Scholar
  25. 25.
    Miao, Z., Chen, H., Liu, P., Liu, Y.: Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization. Anal. Chem. 83, 3994–3997 (2011)CrossRefGoogle Scholar
  26. 26.
    Li, J., Dewald, H.D., Chen, H.: Online coupling of electrochemical reactions with liquid sample desorption electrospray ionization-mass spectrometry. Anal. Chem. 81, 9716–9722 (2009)CrossRefGoogle Scholar
  27. 27.
    Pan, N., Liu, P., Cui, W., Tang, B., Shi, J., Chen, H.: Highly efficient ionization of phosphopeptides at low pH by desorption electrospray ionization mass spectrometry. Analyst 138, 1321–1324 (2013)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Cui, W., Zhang, H., Dewald, H.D., Chen, H.: Electrochemistry-assisted top-down characterization of disulfide-containing proteins. Anal. Chem. 84, 3838–3842 (2012)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Dewald, H.D., Chen, H.: Online mass spectrometric analysis of proteins/peptides following electrolytic cleavage of disulfide bonds. J. Proteome Res. 10, 1293–1304 (2011)CrossRefGoogle Scholar
  30. 30.
    Perry, R.H., Splendore, M., Chien, A., Davis, N.K., Zare, R.N.: Detecting reaction intermediates in liquids on the millisecond time scale using desorption electrospray ionization. Angew. Chem. Int. Ed. 50, 250–254 (2011)CrossRefGoogle Scholar
  31. 31.
    Chen, H., Cotte-Rodriguez, I., Cooks, R.G.: cis-Diol functional group recognition by reactive desorption electrospray ionization (DESI). Chem. Commun. 6, 597–599 (2006)CrossRefGoogle Scholar
  32. 32.
    Kuhlmann, F.E., Apffel, A., Fischer, S.M., Goldberg, G., Goodley, P.C.: J. Am. Soc. Mass Spectrom. 6, 1221–1225 (1995)CrossRefGoogle Scholar
  33. 33.
    Takats, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion–molecule reactions at atmospheric pressure. Anal. Chem. 76, 4050–4058 (2004)CrossRefGoogle Scholar
  34. 34.
    Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120 (1998)Google Scholar
  35. 35.
    Stutzman, J.R., McLuckey, S.A.: Ion/ion reactions of MALDI-derived peptide ions: increased sequence coverage via covalent and electrostatic modification upon charge inversion. Anal. Chem. 84, 10679–10685 (2012)CrossRefGoogle Scholar
  36. 36.
    Iavarone, A.T., Williams, E.R.: J. Am. Chem. Soc. 125, 2319–2327 (2003)CrossRefGoogle Scholar
  37. 37.
    Liu, Y., Miao, Z., Lakshmanan, R., Loo, R.R.O., Loo, J.A., Chen, H.: Signal and charge enhancement for protein analysis by liquid chromatography-mass spectrometry with desorption electrospray ionization. Int. J. Mass Spectrom. 325/327, 161–166 (2012)CrossRefGoogle Scholar
  38. 38.
    Streuli, C.A.: Titrations in Nonaqueous Solvents. Anal. Chem. 36, 363–369 (1964)CrossRefGoogle Scholar
  39. 39.
    Sklenarova, H., Chocholous, P., Koblova, P., Zahalka, L., Satinsky, D., Matysova, L., Solich, P.: High-resolution monolithic columns—a new tool for effective and quick separation. Anal. Bional. Chem. 405, 2255–2263Google Scholar
  40. 40.
    Tanaka, N., Kobayashi, H.: Monolithic columns for liquid chromatography. Anal. Bioanal. Chem. 376, 298–301 (2003)Google Scholar
  41. 41.
    Morlock, G., Ueda, Y.: New coupling of planar chromatography with direct analysis in real time mass spectrometry. J. Chromatogr. A 1143, 243–251 (2007)CrossRefGoogle Scholar
  42. 42.
    Eberherr, W., Buchberger, W., Hertsens, R., Klampfl, C.W.: Investigations on the coupling of high-performance liquid chromatography to direct analysis in real time mass spectrometry. Anal. Chem. 82, 5792–5796 (2010)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  1. 1.Center for Intelligent Chemical Instrumentation, Department of Chemistry and BiochemistryOhio UniversityAthensUSA

Personalised recommendations