Measuring Positive Cooperativity Using the Direct ESI-MS Assay. Cholera Toxin B Subunit Homopentamer Binding to GM1 Pentasaccharide

Research Article

Abstract

Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M–1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M–1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.

Key words

Electrospray ionization mass spectrometry Affinity measurement Cholera toxin GM1 Cooperativity 

Notes

Acknowledgments

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada and the Alberta Glycomics Centre.

References

  1. 1.
    Changeux, J.-P.: Allosteric interactions on biosynthetic L-threonine deaminase from E. coli K12. Cold Spring Harb. Symp. Quant. Biol. 28, 497–504 (1963)CrossRefGoogle Scholar
  2. 2.
    Changeux, J.-P., Rubin, M.M.: Allosteric interactions in aspartate transcarbamylase. III. Interpretation of experimental data in terms of the model of Monod, Wyman, and Changeux. Biochem. 7, 553–560 (1968)CrossRefGoogle Scholar
  3. 3.
    Levitzki, A., Koshland, D.E.: Negative cooperativity in regulatory enzymes. Proc. Natl. Acad. Sci. U. S. A. 62, 1121–1128 (1969)CrossRefGoogle Scholar
  4. 4.
    Koshland, D.E., Neet, K.E.: The catalytic and regulatory properties of enzymes. Annu. Rev. Biochem. 37, 359–410 (1968)CrossRefGoogle Scholar
  5. 5.
    Whitty, A.: Cooperativity and biological complexity. Nat. Chem. Biol. 4, 435–439 (2008)CrossRefGoogle Scholar
  6. 6.
    Ackers, G.K., Shea, M.A., Smith, F.R.: Free energy coupling within macromolecules: the chemical work of ligand binding at the individual sites in cooperative systems. J. Mol. Biol. 170, 223–242 (1983)CrossRefGoogle Scholar
  7. 7.
    Forsén, S., Linse, S.: Cooperativity: over the hill. Trends Biochem. Sci. 20, 495–497 (1995)CrossRefGoogle Scholar
  8. 8.
    Deng, L., Kitova, E., Klassen, J.: Dissociation kinetics of the streptavidin–biotin interaction measured using direct electrospray ionization mass spectrometry analysis. J. Am. Soc. Mas. Spectrom. 24, 49–56 (2013)CrossRefGoogle Scholar
  9. 9.
    Mammen, M., Choi, S.K., Whitesides, G.M.: Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998)CrossRefGoogle Scholar
  10. 10.
    Gabler, E.: Cooperativity concepts in protein binding models-probems of cooperativity definition, detection, identification, and measuring. Pharmazie 32, 739–747 (1977)Google Scholar
  11. 11.
    Edelstein, S.J., Le Novère, N.: Cooperativity of allosteric receptors. J. Mol. Biol. 425, 1424–1432 (2013)CrossRefGoogle Scholar
  12. 12.
    Linse, S., Chazin, W.J.: Quantitative measurements of the cooperativity in an EF-hand protein with sequential calcium binding. Protein Sci. 4, 1038–1044 (1995)Google Scholar
  13. 13.
    Tochtrop, G.P., Richter, K., Tang, C., Toner, J.J., Covey, D.F., Cistola, D.P.: Energetics by NMR: site-specific binding in a positively cooperative system. Proc. Natl. Acad. Sci. U. S. A. 99, 1847–1852 (2002)CrossRefGoogle Scholar
  14. 14.
    Turnbull, W.B., Precious, B.L., Homans, S.W.: Dissecting the cholera toxin−ganglioside gm1 interaction by isothermal titration calorimetry. J. Am. Chem. Soc. 126, 1047–1054 (2004)CrossRefGoogle Scholar
  15. 15.
    Onufriev, A., Ullmann, G.M.: Decomposing complex cooperative ligand binding into simple components: connections between microscopic and macroscopic models. J. Phys. Chem. B 108, 11157–11169 (2004)CrossRefGoogle Scholar
  16. 16.
    Di Cera, E.: Thermodynamic Theory of Site-Specific Binding Processes in Biological Macromolecules. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  17. 17.
    Garcés, J., Acerenza, L., Mizraji, E., Mas, F.: A hierarchical approach to cooperativity in macromolecular and self-assembling binding systems. J. Biol. Phys. 34, 213–235 (2008)CrossRefGoogle Scholar
  18. 18.
    Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)CrossRefGoogle Scholar
  19. 19.
    Daniel, J.M., Friess, S.D., Rajagopalan, S., Wendt, S., Zenobi, R.: Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int. J. Mass Spectrom. 216, 1–27 (2002)CrossRefGoogle Scholar
  20. 20.
    Soya, N., Shoemaker, G.K., Palcic, M.M., Klassen, J.S.: Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltrasferases. Glycobiology 19, 1224–1234 (2009)CrossRefGoogle Scholar
  21. 21.
    Shoemaker, G.K., Soya, N., Palcic, M.M., Klassen, J.S.: Temperature-dependent cooperativity in donor–acceptor substrate binding to the human blood group glycosyltransferases. Glycobiology 18, 587–592 (2008)CrossRefGoogle Scholar
  22. 22.
    Kitova, E., El-Hawiet, A., Schnier, P., Klassen, J.: Reliable determinations of protein–ligand interactions by direct ESI-MS measurements. Are we there yet? J. Am. Soc. Mass Spectrom. 23, 431–441 (2012)CrossRefGoogle Scholar
  23. 23.
    Jørgensen, T.J.D., Roepstorff, P., Heck, A.J.R.: Direct determination of solution binding constants for noncovalent complexes between bacterial cell wall peptide analogues and vancomycin group antibiotics by electrospray ionization mass spectrometry. Anal. Chem. 70, 4427–4432 (1998)CrossRefGoogle Scholar
  24. 24.
    El-Hawiet, A., Kitova, E.N., Arutyunov, D., Simpson, D.J., Szymanski, C.M., Klassen, J.S.: Quantifying ligand binding to large protein complexes using electrospray ionization mass spectrometry. Anal. Chem. 84, 3867–3870 (2012)CrossRefGoogle Scholar
  25. 25.
    El-Hawiet, A., Kitova, E., Liu, L., Klassen, J.: Quantifying labile protein—ligand interactions using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 1893–1899 (2010)Google Scholar
  26. 26.
    Liu, L., Kitova, E., Klassen, J.: Quantifying protein–fatty acid interactions using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 310–318 (2011)CrossRefGoogle Scholar
  27. 27.
    Rogniaux, H., Sanglier, S., Strupat, K., Azza, S.D., Roitel, O., Ball, V., Tritsch, D., Branlant, G., Van Dorsselaer, A.: Mass Spectrometry as a novel approach to probe cooperativity in multimeric enzymatic systems. Anal. Biochem. 291, 48–61 (2001)CrossRefGoogle Scholar
  28. 28.
    Jecklin, M., Touboul, D., Bovet, C., Wortmann, A., Zenobi, R.: Which electrospray-based ionization method best reflects protein–ligand interactions found in solution? A comparison of ESI, nanoESI, and ESSI for the determination of dissociation constants with mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 332–343 (2008)CrossRefGoogle Scholar
  29. 29.
    Dyachenko, A., Gruber, R., Shimon, L., Horovitz, A., Sharon, M.: Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 110, 7235–7239 (2013)CrossRefGoogle Scholar
  30. 30.
    Odumosu, O., Nicholas, D., Yano, H., Langridge, W.: AB toxins: a paradigm switch from deadly to desirable. Toxins 2, 1612–1645 (2010)CrossRefGoogle Scholar
  31. 31.
    Merritt, E.A., Sarfaty, S., van den Akker, F., L'Hoir, C.L., Martial, J.A., Hol, W.G.: Crystal structure of choleara toxin B-pentamer bound to receptor GM1 pentasaccharide. J. Protein Sci. 3, 166–175 (1994)CrossRefGoogle Scholar
  32. 32.
    Heyningen, S.V.: Cholera toxin: interaction of subunits with ganglioside GM1. Science (New York, NY) 183, 656–657 (1974)CrossRefGoogle Scholar
  33. 33.
    Fishman, P.H., Moss, J., Osborne, J.C.: Interaction of choleragen with the oligosaccharide of ganglioside GM1: evidence for multiple oligosaccharide binding sites. Biochem. 17, 711–716 (1978)CrossRefGoogle Scholar
  34. 34.
    Sattler, J., Schwarzmann, G., Staerk, J., Ziegler, W., Wiegandt, H.: Studies of the ligand binding to cholera toxin. III. Cooperativity of oligosaccharide binding. Hoppe-Seyler's Z. Physiol. Chem. 6, 719–723 (1978)Google Scholar
  35. 35.
    Miller, I.R., Vinkler, H., Yavin, E.: Cholera toxin complexes with the ganglioside GM1 in lipid monolayers and bilayers: effect on structure and permeability. Bioelectrochem. Bioenerg 22, 365–377 (1989)CrossRefGoogle Scholar
  36. 36.
    Schön, A., Freire, E.: Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its surface receptor, ganglioside GM1. Biochemistry 28, 5019–5024 (1989)CrossRefGoogle Scholar
  37. 37.
    Kuziemko, G.M., Stroh, M., Stevens, R.C.: Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35, 6375–6384 (1996)CrossRefGoogle Scholar
  38. 38.
    Moran-Mirabal, J.M., Edel, J.B., Meyer, G.D., Throckmorton, D., Singh, A.K., Craighead, H.G.: Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy. Biophys. J. 89, 296–305 (2005)CrossRefGoogle Scholar
  39. 39.
    Williams, T.L., Jenkins, A.T.A.: Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride. J. Am. Chem. Soc. 130, 6438–6443 (2008)CrossRefGoogle Scholar
  40. 40.
    MacKenzie, C.R., Hirama, T., Lee, K.K., Altman, E., Young, N.M.: Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem. 272, 5533–5538 (1997)CrossRefGoogle Scholar
  41. 41.
    Borch, J., Torta, F., Sligar, S.G., Roepstorff, P.: Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor. Anal. Chem. 80, 6245–6252 (2008)CrossRefGoogle Scholar
  42. 42.
    Lauer, S., Goldstein, B., Nolan, R.L., Nolan, J.P.: Analysis of cholera toxin–ganglioside interactions by flow cytometry. Biochemistry 41, 1742–1751 (2002)CrossRefGoogle Scholar
  43. 43.
    Baksh, M.M., Jaros, M., Groves, J.T.: Detection of molecular interactions at membrane surfaces through colloid phase transitions. Nature 427, 139–141 (2004)CrossRefGoogle Scholar
  44. 44.
    Schafer, D.E., Thakur, A.K.: Quantitative description of the binding of GM1 oligosaccharide by cholera enterotoxin. Cell Biophys. 4, 25–40 (1982)Google Scholar
  45. 45.
    Sun, J., Kitova, E.N., Wang, W., Klassen, J.S.: Method for distinguishing specific from nonspecific protein−ligand complexes in nanoelectrospray ionization mass spectrometry. Anal. Chem. 78, 3010–3018 (2006)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  1. 1.Alberta Glycomics Centre and Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations