Advertisement

Gas-Phase Structure of Amyloid-β (12 – 28) Peptide Investigated by Infrared Spectroscopy, Electron Capture Dissociation and Ion Mobility Mass Spectrometry

  • Thi Nga Le
  • Jean Christophe Poully
  • Frédéric Lecomte
  • Nicolas Nieuwjaer
  • Bruno Manil
  • Charles Desfrançois
  • Fabien Chirot
  • Jerome Lemoine
  • Philippe Dugourd
  • Guillaume van der Rest
  • Gilles GrégoireEmail author
Research Article

Abstract

The gas-phase structures of doubly and triply protonated Amyloid-β12-28 peptides have been investigated through the combination of ion mobility (IM), electron capture dissociation (ECD) mass spectrometry, and infrared multi-photon dissociation (IRMPD) spectroscopy together with theoretical modeling. Replica-exchange molecular dynamics simulations were conducted to explore the conformational space of these protonated peptides, from which several classes of structures were found. Among the low-lying conformers, those with predicted diffusion cross-sections consistent with the ion mobility experiment were further selected and their IR spectra simulated using a hybrid quantum mechanical/semiempirical method at the ONIOM DFT/B3LYP/6-31 g(d)/AM1 level. In ECD mass spectrometry, the c/z product ion abundance (PIA) has been analyzed for the two charge states and revealed drastic differences. For the doubly protonated species, N – Cα bond cleavage occurs only on the N and C terminal parts, while a periodic distribution of PIA is clearly observed for the triply charged peptides. These PIA distributions have been rationalized by comparison with the inverse of the distances from the protonated sites to the carbonyl oxygens for the conformations suggested from IR and IM experiments. Structural assignment for the amyloid peptide is then made possible by the combination of these three experimental techniques that provide complementary information on the possible secondary structure adopted by peptides. Although globular conformations are favored for the doubly protonated peptide, incrementing the charge state leads to a conformational transition towards extended structures with 310- and α-helix motifs.

Key words

Amyloid peptide Gas phase structure ECD Ion Mobility IRMPD 

Notes

Acknowledgments

The authors thank the CLIO staff for its technical assistance, and the financial support of the CNRS TGE-FTICR program for the ECD experiments and the CNRS GDR 3335 for the IMS experiments. They acknowledge the use of the computing facility Magi cluster of the Université Paris 13.

Supplementary material

13361_2013_722_MOESM1_ESM.doc (3.3 mb)
ESM 1 (DOC 3371 kb)

References

  1. 1.
    Roychaudhuri, R., Yang, M., Hoshi, M.M., Teplow, D.B.: Amyloid β-protein assembly and alzheimer disease. J. Biol. Chem. 284, 4749–4753 (2009)CrossRefGoogle Scholar
  2. 2.
    Dyson, H.J., Rance, M., Houghten, R.A., Wright, P.E., Lerner, R.A.: Folding of immunogenic peptide-fragments of proteins in water solution. 2. The nascent helix. J. Mol. Biol 201, 201–217 (1988)CrossRefGoogle Scholar
  3. 3.
    Roccatano, D., Colombo, G., Fioroni, M., Mark, A.E.: Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc. Natl. Acad. Sci. USA 99, 12179–12184 (2002)CrossRefGoogle Scholar
  4. 4.
    Hou, L.M., Shao, H.Y., Zhang, Y.B., Li, H., Menon, N.K., Neuhaus, E.B., Brewer, J.M., Byeon, I.J.L., Ray, D.G., Vitek, M.P., Iwashita, T., Makula, R.A., Przybyla, A.B., Zagorski, M.G.: Solution NMR studies of the A β(1-40) and A β(1-42) peptides establish that the met35 oxidation state affects the mechanism of amyloid formation. J. Am. Chem. Soc. 126, 1992–2005 (2004)CrossRefGoogle Scholar
  5. 5.
    Barrow, C.J., Zagorski, M.G.: Solution structures of Β peptide and its constituent fragments—relation to amyloid deposition. Science 253, 179–182 (1991)CrossRefGoogle Scholar
  6. 6.
    Barrow, C.J., Yasuda, A., Kenny, P.T.M., Zagorski, M.G.: Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer’s disease—analysis of circular-dichroism spectra. J. Mol. Biol. 225, 1075–1093 (1992)CrossRefGoogle Scholar
  7. 7.
    Fraser, P.E., Levesque, L., McLachlan, D.R.: Alzheimer a-Β amyloid forms an inhibitory neuronal substrate. J. Neurochem. 62, 1227–1230 (1994)CrossRefGoogle Scholar
  8. 8.
    Jarvet, J., Damberg, P., Bodell, K., Eriksson, L.E.G., Graslund, A.: Reversible random coil to β-sheet transition and the early stage of aggregation of the Aβ(12-28) fragment from the Alzheimer peptide. J. Am. Chem. Soc. 122, 4261–4268 (2000)CrossRefGoogle Scholar
  9. 9.
    Danielsson, J., Jarvet, J., Damberg, P., Graslund, A.: The Alzheimer β-peptide shows temperature-dependent transitions between left-handed 3(1)-helix, β-strand and random coil secondary structures. FEBS J. 272, 3938–3949 (2005)CrossRefGoogle Scholar
  10. 10.
    Daidone, I., Simona, F., Roccatano, D., Broglia, R.A., Tiana, G., Colombo, G., Di Nola, A.: β-hairpin conformation of fibrillogenic peptides: Structure and α-β transition mechanism revealed by molecular dynamics simulations. Prot. Struct. Funct Bioinformatics 57, 198–204 (2004)CrossRefGoogle Scholar
  11. 11.
    Simona, F., Tiana, G., Broglia, R.A., Colombo, G.: Modeling the α-helix to β-hairpin transition mechanism and the formation of oligomeric aggregates of the fibrillogenic peptide A β(12-28): insights from all-atom molecular dynamics simulations. J. Mol. Graphics Modeling 23, 263–273 (2004)CrossRefGoogle Scholar
  12. 12.
    Baumketner, A., Shea, J.E.: Folding landscapes of the Alzheimer amyloid-β (12-28) peptide. J. Mol. Biol. 362, 567–579 (2006)CrossRefGoogle Scholar
  13. 13.
    Ma, K., Clancy, E.L., Zhang, Y.B., Ray, D.G., Wollenberg, K., Zagorski, M.G.: Residue-specific pK(a) measurements of the β-peptide and mechanism of pH-induced amyloid formation. J. Am. Chem. Soc. 121, 8698–8706 (1999)CrossRefGoogle Scholar
  14. 14.
    Fraser, P.E., Nguyen, J.T., Surewicz, W.K., Kirschner, D.A.: Ph-dependent structural transitions of Alzheimer amyloid peptides. Biophys. J. 60, 1190–1201 (1991)CrossRefGoogle Scholar
  15. 15.
    Bernstein, S.L., Wyttenbach, T., Baumketner, A., Shea, J.E., Bitan, G., Teplow, D.B., Bowers, M.T.: Amyloid β-protein: monomer structure and early aggregation states of Amyloid-β 42 and its Pro(19) alloform. J. Am. Chem. Soc. 127, 2075–2084 (2005)CrossRefGoogle Scholar
  16. 16.
    Teplow, D.B., Lazo, N.D., Bitan, G., Bernstein, S., Wyttenbach, T., Bowers, M.T., Baumketner, A., Shea, J.E., Urbanc, B., Cruz, L., Borreguero, J., Stanley, H.E.: Elucidating amyloid β-protein folding and assembly: a multidisciplinary approach. Acc. Chem. Res. 39, 635–645 (2006)CrossRefGoogle Scholar
  17. 17.
    Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.E., Ruotolo, B.T., Robinson, C.V., Bowers, M.T.: Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the etiology of Alzheimer’s disease. Nat. Chem. 1, 326–331 (2009)CrossRefGoogle Scholar
  18. 18.
    Drayss, M.K., Blunk, D., Oomens, J., Polfer, N., Schmuck, C., Gao, B., Wyttenbach, T., Bowers, M.T., Schafer, M.: Gas-phase structures of solution-phase zwitterions: charge solvation or salt bridge? Int. J. Mass Spectrom. 281, 97–100 (2009)CrossRefGoogle Scholar
  19. 19.
    Joly, L., Antoine, R., Albrieux, F., Ballivian, R., Broyer, M., Chirot, F., Lemoine, J., Dugourd, P., Greco, C., Mitric, R., Bonacic-Koutecky, V.: Optical and structural properties of copper-oxytocin dications in the gas phase. J Phys Chem B 113, 11293–11300 (2009)CrossRefGoogle Scholar
  20. 20.
    Poully, J.C., Lecomte, F., Nieuwjaer, N., Manil, B., Schermann, J.P., Desfrancois, C., Gregoire, G., Ballivian, R., Chirot, F., Lemoine, J., Calvo, F., Antoine, R., Dugourd, P.: Combining ion mobility mass spectrometry and infrared multiphoton dissociation spectroscopy to probe the structure of gas-phase vancomycin-Ac(2)(L)K(D)A(D)A non-covalent complex. Int. J. Mass Spectrom. 297, 28–35 (2010)CrossRefGoogle Scholar
  21. 21.
    Poully, J.C., Gregoire, G., Ballivian, R., Dugourd, P., Schermann, J.P.: Coupling infrared multiphoton dissociation spectroscopy, mass-spectrometry and ion mobility spectrometry for the determination of structures of angiotensin II cations. Vibrational Spectrosc. 56, 105–109 (2011)CrossRefGoogle Scholar
  22. 22.
    Papadopoulos, G., Svendsen, A., Boyarkin, O.V., Rizzo, T.R.: Spectroscopy of mobility-selected biomolecular ions. Faraday Discuss. 150, 243–255 (2011)CrossRefGoogle Scholar
  23. 23.
    Papadopoulos, G., Svendsen, A., Boyarkin, O.V., Rizzo, T.R.: Conformational distribution of bradykinin bk + 2 H (2+) revealed by cold ion spectroscopy coupled with FAIMS. J. Am. Soc. Mass Spectrom. 23, 1173–1181 (2012)CrossRefGoogle Scholar
  24. 24.
    Oomens, J., Sartakov, B.G., Meijer, G., von Helden, G.: Gas-phase infrared multiple photon dissociation spectroscopy of mass-selected molecular ions. Int. J. Mass Spectrom. 254, 1–19 (2006)Google Scholar
  25. 25.
    Gregoire, G., Gaigeot, M.P., Marinica, D.C., Lemaire, J., Schermann, J.P., Desfrançois, C.: Resonant infrared multiphoton dissociation spectroscopy of gas-phase protonated peptides. Experiments and Car-Parrinello dynamis at 300 K. Phys. Chem., Chem. Phys. 9, 3082–3097 (2007)CrossRefGoogle Scholar
  26. 26.
    Eyler, J.R.: Infrared multiple photon dissociation spectroscopy of ions in penning traps. Mass Spectrom. Rev. 28, 448–467 (2009)CrossRefGoogle Scholar
  27. 27.
    Polfer, N.C., Oomens, J.: Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom. Rev. 28, 468–494 (2009)CrossRefGoogle Scholar
  28. 28.
    Vaden, T.D., Gowers, S.A.N., de Boer, T., Steill, J.D., Oomens, J., Snoek, L.C.: Conformational preferences of an amyloidogenic peptide: IR spectroscopy of Ac-VQIVYK-NHMe. J. Am. Chem. Soc. 130, 14640–14650 (2008)CrossRefGoogle Scholar
  29. 29.
    Gabelica, V., Rosu, F., De Pauw, E., Lemaire, J., Gillet, J.C., Poully, J.C., Lecomte, F., Gregoire, G., Schermann, J.P., Desfrancois, C.: Infrared signature of DNA G-quadruplexes in the gas phase. J. Am. Chem. Soc. 130, 1810–1811 (2008)CrossRefGoogle Scholar
  30. 30.
    Rosu, F., Gabelica, V., Joly, L., Gregoire, G., De Pauw, E.: Zwitterionic i-motif structures are preserved in DNA negatively charged ions produced by electrospray mass spectrometry. Phys. Chem., Chem. Phys. 12, 13448–13454 (2010)CrossRefGoogle Scholar
  31. 31.
    Oomens, J., Polfer, N., Moore, D.T., van der Meer, L., Marshall, A.G., Eyler, J.R., Meijer, G., von Helden, G.: Charge-state resolved mid-infrared spectroscopy of a gas-phase protein. Phys. Chem. Chem. Phys. 7, 1345–1348 (2005)CrossRefGoogle Scholar
  32. 32.
    Poully, J.C., Lecomte, F., Nieuwjaer, N., Manil, B., Schermann, J.P., Desfrancois, C., Calvo, F., Gregoire, G.: Probing the specific interactions and structures of gas-phase vancomycin antibiotics with cell-wall precursor through IRMPD spectroscopy. Phys. Chem. Chem. Phys. 12, 3606–3615 (2010)CrossRefGoogle Scholar
  33. 33.
    Breuker, K., Oh, H.B., Horn, D.M., Cerda, B.A., McLafferty, F.W.: Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J. Am. Chem. Soc. 124, 6407–6420 (2002)CrossRefGoogle Scholar
  34. 34.
    Budnik, B.A., Nielsen, M.L., Olsen, J.V., Haselmann, K.F., Horth, P., Haehnel, W., Zubarev, R.A.: Can relative cleavage frequencies in peptides provide additional sequence information? Int. J. Mass Spectrom. 219, 283–294 (2002)CrossRefGoogle Scholar
  35. 35.
    Leymarie, N., Costello, C.E., O’Connor, P.B.: Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 125, 8949–8958 (2003)CrossRefGoogle Scholar
  36. 36.
    Breuker, K., Oh, H.B., Lin, C., Carpenter, B.K., McLafferty, F.W.: Nonergodic and conformational control of the electron capture dissociation of protein cations. Proc. Natl. Acad. Sci. USA 101, 14011–14016 (2004)CrossRefGoogle Scholar
  37. 37.
    Polfer, N.C., Haselmann, K.F., Langridge-Smith, P.R.R., Barran, P.E.: Structural investigation of naturally occurring peptides by electron capture dissociation and AMBER force field modelling. Mol. Phys. 103, 1481–1489 (2005)CrossRefGoogle Scholar
  38. 38.
    O’Connor, P.B., Lin, C., Cournoyer, J.J., Pittman, J.L., Belyayev, M., Budnik, B.A.: Long-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 17, 576–585 (2006)CrossRefGoogle Scholar
  39. 39.
    Ben-Hamidane, H., He, H., Tsybin, O.Y., Emmett, M.R., Hendrickson, C.L., Marshall, A.G., Tsybin, Y.O.: Periodic sequence distribution of product ion abundances in electron capture dissociation of amphipathic peptides and proteins. J. Am. Soc. Mass Spectrom. 20, 1182–1192 (2009)CrossRefGoogle Scholar
  40. 40.
    Haag, N., Holm, A.I.S., Johansson, H.A.B., Zettergren, H., Schmidt, H.T., Nielsen, S.B., Hvelplund, P., Cederquist, H.: Electron capture induced dissociation of doubly protonated pentapeptides: dependence on molecular structure and charge separation. J. Chem. Phys. 134, 035102 (2011)Google Scholar
  41. 41.
    Turecek, F.: N–C-α bond dissociation energies and kinetics in amide and peptide radicals. Is the dissociation a nonergodic process? J. Am. Chem. Soc. 125, 5954–5963 (2003)CrossRefGoogle Scholar
  42. 42.
    Zubarev, R.A., Haselmann, K.F., Budnik, B., Kjeldsen, F., Jensen, F.: Towards an understanding of the mechanism of electron-capture dissociation: a historical perspective and modern ideas. Eur. J. Mass Spectrom. 8, 337–349 (2002)CrossRefGoogle Scholar
  43. 43.
    Cooper, H.J., Hudgins, R.R., Hakansson, K., Marshall, A.G.: Characterization of amino acid side chain losses in electron capture dissociation. J. Am. Soc. Mass Spectrom. 13, 241–249 (2002)CrossRefGoogle Scholar
  44. 44.
    Turecek, F., Syrstad, E.A.: Mechanism and energetics of intramolecular hydrogen transfer in amide and peptide radicals and cation-radicals. J. Am. Chem. Soc. 125, 3353–3369 (2003)CrossRefGoogle Scholar
  45. 45.
    Chamot-Rooke, J., Malosse, C., Frison, G., Turecek, F.: Electron capture in charge-tagged peptides. Evidence for the role of excited electronic states. J. Am. Soc. Mass Spectrom. 18, 2146–2161 (2007)CrossRefGoogle Scholar
  46. 46.
    Holm, A.I.S., Larsen, M.K., Panja, S., Hvelplund, P., Nielsen, S.B., Leib, R.D., Donald, W.A., Williams, E.R., Hao, C.T., Turecek, F.: Electron capture, femtosecond electron transfer and theory: a study of noncovalent crown ether 1, n-diammonium alkane complexes. Int. J. Mass Spectrom. 276, 116–126 (2008)CrossRefGoogle Scholar
  47. 47.
    Simons, J.: Mechanisms for S–S and N–C-α bond cleavage in peptide ECD and ETD mass spectrometry. Chem. Phys. Lett. 484, 81–95 (2010)CrossRefGoogle Scholar
  48. 48.
    Sobczyk, M., Anusiewicz, W., Berdys-Kochanska, J., Sawicka, A., Skurski, P., Simons, J.: Coulomb-assisted dissociative electron attachment: application to a model peptide. J. Phys. Chem. A 109, 250–258 (2005)CrossRefGoogle Scholar
  49. 49.
    Neff, D., Smuczynska, S., Simons, J.: Electron shuttling in electron transfer dissociation. Int. J. Mass Spectrom. 283, 122–134 (2009)CrossRefGoogle Scholar
  50. 50.
    Mac Aleese, L., Simon, A., McMahon, T.B., Ortega, J.M., Scuderi, D., Lemaire, J., Maitre, P.: Mid-IR spectroscopy of protonated leucine methyl ester performed with an FTICR or a Paul type ion-trap. Int. J. Mass Spectrom. 249, 14–20 (2006)Google Scholar
  51. 51.
    Albrieux, F., Calvo, F., Chirot, F., Vorobyev, A., Tsybin, Y.O., Lepere, V., Antoine, R., Lemoine, J., Dugourd, P.: Conformation of polyalanine and polyglycine dications in the gas phase: insight from ion mobility spectrometry and replica-exchange molecular dynamics. J. Phys. Chem. A 114, 6888–6896 (2010)CrossRefGoogle Scholar
  52. 52.
    Caravatti, P., Allemann, M.: The infinity cell - a new trapped-ion cell with radiofrequency covered trapping electrodes for Fourier-transform ion-cyclotron resonance mass-spectrometry. Org. Mass Spectrom. 26, 514–518 (1991)CrossRefGoogle Scholar
  53. 53.
    Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., Debolt, S., Ferguson, D., Seibel, G., Kollman, P.: Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Computer Phys. Commun. 91, 1–41 (1995)CrossRefGoogle Scholar
  54. 54.
    Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRefGoogle Scholar
  55. 55.
    Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996)CrossRefGoogle Scholar
  56. 56.
    Poully, J.C., Gregoire, G., Schermann, J.P.: Evaluation of the ONIOM Method for interpretation of infrared spectra of gas-phase molecules of biological interest. J. Phys. Chem. A 113, 8020–8026 (2009)CrossRefGoogle Scholar
  57. 57.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo,C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.. Gaussian 09, Rev A.2, Wallingford, CT ( 2009)Google Scholar
  58. 58.
    NIST available at: http://cccbdb.nist.gov/vibscalejust.asp. Accessed June 2013
  59. 59.
    Parneix, P., Basire, M., Calvo, F.: Accurate modeling of infrared multiple photon dissociation spectra: the dynamical role of anharmonicities. J. Phys. Chem. A 117, 3954–3959 (2013)CrossRefGoogle Scholar
  60. 60.
    Revercomb, H.E., Mason, E.A.: Theory of plasma chromatography gaseous electrophoresis—review. Anal. Chem. 47, 970–983 (1975)CrossRefGoogle Scholar
  61. 61.
    Gill, A.C., Jennings, K.R., Wyttenbach, T., Bowers, M.T.: Conformations of biopolymers in the gas phase: a new mass spectrometric method. Int. J. Mass Spectrom. 195, 685–697 (2000)Google Scholar
  62. 62.
    Rossi, M., Blum, V., Kupser, P., von Helden, G., Bierau, F., Pagel, K., Meijer, G., Scheffler, M.: Secondary structure of Ac-Ala(n)-LysH(+) polyalanine peptides (n =5, 10, 15) in vacuo: helical or not? J. Phys. Chem. Lett. 1, 3465–3470 (2010)CrossRefGoogle Scholar
  63. 63.
    Lin, C., O’Connor, P.B., Cournoyer, J.J.: Use of a double resonance electron capture dissociation experiment to probe fragment intermediate lifetimes. J. Am. Soc. Mass Spectrom. 17, 1605–1615 (2006)CrossRefGoogle Scholar
  64. 64.
    Lin, C., Cournoyer, J.J., O’Connor, P.B.: Probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD. J. Am. Soc. Mass Spectrom. 19, 780–789 (2008)CrossRefGoogle Scholar
  65. 65.
    Mihalca, R., Kleinnijenhuis, A.J., McDonnell, L.A., Heck, A.J.R., Heeren, R.M.A.: Electron capture dissociation at low temperatures reveals selective dissociations. J. Am. Soc. Mass Spectrom. 15, 1869–1873 (2004)CrossRefGoogle Scholar
  66. 66.
    Lynn, D.G., Meredith, S.C.: Review: model peptides and the physicochemical approach to β-amyloids. J. Struct. Biol. 130, 153–173 (2000)CrossRefGoogle Scholar
  67. 67.
    Klimov, D.K., Thirumalai, D.: Dissecting the assembly of A β(16-22) amyloid peptides into antiparallel β sheets. Structure 11, 295–307 (2003)CrossRefGoogle Scholar
  68. 68.
    Jarvet, J., Damberg, P., Danielsson, J., Johansson, I., Eriksson, L.E.G., Graslund, A.: A left-handed 3(1) helical conformation in the Alzheimer A β(12-28) peptide. FEBS Lett. 555, 371–374 (2003)CrossRefGoogle Scholar
  69. 69.
    Stearns, J.A., Seaiby, C., Boyarkin, O.V., Rizzo, T.R.: Spectroscopy and conformational preferences of gas-phase helices. Phys. Chem., Chem. Phys. 11, 125–132 (2009)CrossRefGoogle Scholar
  70. 70.
    Pagel, K., Kupser, P., Bierau, F., Polfer, N.C., Steill, J.D., Oomens, J., Meijer, G., Koksch, B., von Helden, G.: Gas-phase IR spectra of intact [alpha]-helical coiled coil protein complexes. Int. J. Mass Spectrom. 283, 161–168 (2009)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Thi Nga Le
    • 1
  • Jean Christophe Poully
    • 1
    • 5
  • Frédéric Lecomte
    • 1
  • Nicolas Nieuwjaer
    • 1
  • Bruno Manil
    • 1
  • Charles Desfrançois
    • 1
  • Fabien Chirot
    • 2
  • Jerome Lemoine
    • 2
  • Philippe Dugourd
    • 3
  • Guillaume van der Rest
    • 4
  • Gilles Grégoire
    • 1
    Email author
  1. 1.Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, CNRS UMR 7538VilletaneuseFrance
  2. 2.Université Lyon 1, CNRS, UMR 5280, Institut des Sciences AnalytiquesVilleurbanneFrance
  3. 3.Université Lyon 1, CNRS, UMR 5306, Institut Lumière MatièreVilleurbanneFrance
  4. 4.Laboratoire de Chimie Physique, Université Paris Sud, CNRSOrsayFrance
  5. 5.CIMAP, UMR 6252 CEA, CNRS, University of Caen and ENSICAENCAEN Cedex 5France

Personalised recommendations