Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting

Research Article

Abstract

Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein–ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric “oxidized” peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.

Keywords

Protein oxidation Hydroxyl radical protein footprinting Peptide oxidation Covalent labeling 

Supplementary material

13361_2013_719_MOESM1_ESM.doc (15.2 mb)
ESM 1(DOC 15608 kb)

References

  1. 1.
    Shacter, E.: Quantification and significance of protein oxidation in biological samples. Drug Metab. Rev. 32, 307–326 (2000)CrossRefGoogle Scholar
  2. 2.
    Stadtman, E.R., Berlett, B.S.: Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 30, 225–243 (1998)CrossRefGoogle Scholar
  3. 3.
    Marondedze, C., Turek, I., Parrott, B., Thomas, L., Jankovic, B., Lilley, K.S., Gehring, C.: Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins. Cell Commun. Signal. 11, 1 (2013)CrossRefGoogle Scholar
  4. 4.
    Kuhns, L.G., Mahawar, M., Sharp, J.S., Benoit, S., Maier, R.J.: Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation. Biochem. J. 450, 141–148 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, H.J., Chen, Y.C.: Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking. Anal. Chem. 84, 7881–7890 (2012)CrossRefGoogle Scholar
  6. 6.
    Gitlin, G., Tsarbopoulos, A., Patel, S.T., Sydor, W., Pramanik, B.N., Jacobs, S., Westreich, L., Mittelman, S., Bausch, J.N.: Isolation and characterization of a monomethioninesulfoxide variant of interferon alpha-2b. Pharm. Res. 13, 762–769 (1996)CrossRefGoogle Scholar
  7. 7.
    Chen, W., Yewdell, J.W., Levine, R.L., Bennink, J.R.: Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. J. Exp. Med. 189, 1757–1764 (1999)CrossRefGoogle Scholar
  8. 8.
    Berti, P.J., Ekiel, I., Lindahl, P., Abrahamson, M., Storer, A.C.: Affinity purification and elimination of methionine oxidation in recombinant human cystatin C. Protein Expr. Purif. 11, 111–118 (1997)CrossRefGoogle Scholar
  9. 9.
    Hsu, Y.R., Narhi, L.O., Spahr, C., Langley, K.E., Lu, H.S.: In vitro methionine oxidation of Escherichia coli-derived human stem cell factor: effects on the molecular structure, biological activity, and dimerization. Protein Sci. 5, 1165–1173 (1996)CrossRefGoogle Scholar
  10. 10.
    Xu, G., Chance, M.R.: Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev. 107, 3514–3543 (2007)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Chance, M.R.: Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal. Chem. 83, 7234–7241 (2011)CrossRefGoogle Scholar
  12. 12.
    Charvatova, O., Foley, B.L., Bern, M.W., Sharp, J.S., Orlando, R., Woods, R.J.: Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: application to galectin-1. J. Am. Soc. Mass Spectrom. 19, 1692–1705 (2008)CrossRefGoogle Scholar
  13. 13.
    Chance, M.R.: Unfolding of apomyoglobin examined by synchrotron footprinting. Biochem. Biophys. Res. Commun. 287, 614–621 (2001)CrossRefGoogle Scholar
  14. 14.
    Kiselar, J.G., Chance, M.R.: Future directions of structural mass spectrometry using hydroxyl radical footprinting. J. Mass Spectrom. 45, 1373–1382 (2010)CrossRefGoogle Scholar
  15. 15.
    Zhang, H., Gau, B.C., Jones, L.M., Vidavsky, I., Gross, M.L.: Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system. Anal. Chem. 83, 311–318 (2011)CrossRefGoogle Scholar
  16. 16.
    Jones, L.M., Sperry, J.B., Carroll, J.A., Gross, M.L.: Fast photochemical oxidation of proteins for epitope mapping. Anal. Chem. 83, 7657–7661 (2011)CrossRefGoogle Scholar
  17. 17.
    Gau, B., Garai, K., Frieden, C., Gross, M.L.: Mass spectrometry-based protein footprinting characterizes the structures of oligomeric apolipoprotein E2, E3, and E4. Biochemistry 50, 8117–8126 (2011)CrossRefGoogle Scholar
  18. 18.
    Chen, J., Rempel, D.L., Gau, B.C., Gross, M.L.: Fast photochemical oxidation of proteins and mass spectrometry follow submillisecond protein folding at the amino-acid level. J. Am. Chem. Soc. 134, 18724–18731 (2012)CrossRefGoogle Scholar
  19. 19.
    Gau, B.C., Chen, J., Gross, M.L.: Fast photochemical oxidation of proteins for comparing solvent-accessibility changes accompanying protein folding: data processing and application to barstar. Biochim. Biophys. Acta 1834, 1230–1238 (2013)CrossRefGoogle Scholar
  20. 20.
    Smedley, J.G., Sharp, J.S., Kuhn, J.F., Tomer, K.B.: Probing the pH-dependent prepore to pore transition of Bacillus anthracis protective antigen with differential oxidative protein footprinting. Biochemistry 47, 10694–10704 (2008)CrossRefGoogle Scholar
  21. 21.
    Maleknia, S.D., Brenowitz, M., Chance, M.R. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem. 71, 3965–3973 (1999)CrossRefGoogle Scholar
  22. 22.
    Goldsmith, S.C., Guan, J.Q., Almo, S., Chance, M.: Synchrotron protein footprinting: a technique to investigate protein-protein interactions. J. Biomol. Struct. Dyn. 19, 405–418 (2001)CrossRefGoogle Scholar
  23. 23.
    Sharp, J.S., Sullivan, D.M., Cavanagh, J., Tomer, K.B.: Measurement of multisite oxidation kinetics reveals an active site conformational change in Spo0F as a result of protein oxidation. Biochemistry 45, 6260–6266 (2006)CrossRefGoogle Scholar
  24. 24.
    Sharp, J.S., Tomer, K.B.: Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping. Biophys. J. 92, 1682–1692 (2007)CrossRefGoogle Scholar
  25. 25.
    Hambly, D.M., Gross, M.L.: Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 16, 2057–2063 (2005)CrossRefGoogle Scholar
  26. 26.
    Gau, B.C., Sharp, J.S., Rempel, D.L., Gross, M.L.: Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal. Chem. 81, 6563–6571 (2009)CrossRefGoogle Scholar
  27. 27.
    Watson, C., Janik, I., Zhuang, T., Charvatova, O., Woods, R.J., Sharp, J.S.: Pulsed electron beam water radiolysis for submicrosecond hydroxyl radical protein footprinting. Anal. Chem. 81, 2496–2505 (2009)CrossRefGoogle Scholar
  28. 28.
    Srikanth, R., Wilson, J., Bridgewater, J.D., Numbers, J.R., Lim, J., Olbris, M.R., Kettani, A., Vachet, R.W.: Improved sequencing of oxidized cysteine and methionine containing peptides using electron transfer dissociation. J. Am. Soc. Mass Spectrom. 18, 1499–1506 (2007)CrossRefGoogle Scholar
  29. 29.
    Srikanth, R., Wilson, J., Vachet, R.W.: Correct identification of oxidized histidine residues using electron-transfer dissociation. J. Mass Spectrom. 44, 755–762 (2009)CrossRefGoogle Scholar
  30. 30.
    Jumper, C.C., Bomgarden, R., Rogers, J., Etienne, C., Schriemer, D.C.: High-resolution mapping of carbene-based protein footprints. Anal. Chem. 84, 4411–4418 (2012)CrossRefGoogle Scholar
  31. 31.
    Wiesner, J., Premsler, T., Sickmann, A.: Application of electron transfer dissociation (ETD) for the analysis of post-translational modifications. Proteomics 8, 4466–4483 (2008)CrossRefGoogle Scholar
  32. 32.
    Zhou, Y., Dong, J., Vachet, R.W.: Electron transfer dissociation of modified peptides and proteins. Curr. Pharm. Biotechnol. 12, 1558–1567 (2011)CrossRefGoogle Scholar
  33. 33.
    Lagerwerf, F.M., van de Weert, M., Heerma, W., Haverkamp, J.: Identification of oxidized methionine in peptides. Rapid Commun. Mass Spectrom. 10, 1905–1910 (1996)CrossRefGoogle Scholar
  34. 34.
    Xu, G., Takamoto, K., Chance, M.R.: Radiolytic modification of basic amino acid residues in peptides: probes for examining protein-protein interactions. Anal. Chem. 75, 6995–7007 (2003)CrossRefGoogle Scholar
  35. 35.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Xiaoyan Li
    • 1
  • Zixuan Li
    • 1
  • Boer Xie
    • 1
  • Joshua S. Sharp
    • 1
  1. 1.Complex Carbohydrate Research CenterUniversity of GeorgiaAthensUSA

Personalised recommendations