Direct Electrospray Ionization Mass Spectrometric Profiling of Real-World Samples via a Solid Sampling Probe

  • Zhan YuEmail author
  • Lee Chuin Chen
  • Mridul Kanti Mandal
  • Kentaro Yoshimura
  • Sen Takeda
  • Kenzo HiraokaEmail author
Application Note


This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.

Key words

Electrospray ionization Direct sampling probe Direct analysis 



This work is financially supported by the Grants-in-Aid for Scientific Research (S) and Development of System and Technology for Advanced Measurement and Analysis Program (SENTAN) from Japan Science and Technology Agency (JST). Z.Y. thanks the financial support from the National Natural Science Foundation of China (21205080) and the Scientific Research Fund of Liaoning Provincial Education Department (L2012393).

Supplementary material

13361_2013_697_MOESM1_ESM.pdf (3.5 mb)
ESM 1 (PDF 3549 kb)


  1. 1.
    Wiseman, J.M., Ifa, D.R., Venter, A., Cooks, R.G.: Ambient molecular imaging by desorption electrospray ionization mass spectrometry. Nat. Protoc. 3, 517–524 (2008)CrossRefGoogle Scholar
  2. 2.
    Chen, H., Hu, B., Hu, Y., Huan, Y., Zhou, Z., Qiao, X.: Neutral desorption using a sealed enclosure to sample explosives on human skin for rapid detection by EESI-MS. J. Am. Soc. Mass Spectrom. 20, 719–722 (2009)CrossRefGoogle Scholar
  3. 3.
    Shiea, J., Huang, M.-Z., Hsu, H.-J., Lee, C.-Y., Yuan, C.-H., Beech, I., Sunner, J.: Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 19, 3701–3704 (2005)CrossRefGoogle Scholar
  4. 4.
    Cheng, S.-C., Cheng, T.-L., Chang, H.-C., Shiea, J.: Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions. Anal. Chem. 81, 868–874 (2008)CrossRefGoogle Scholar
  5. 5.
    Rezenom, Y.H., Dong, J., Murray, K.K.: Infrared laser-assisted desorption electrospray ionization mass spectrometry. Analyst 133, 226–232 (2008)CrossRefGoogle Scholar
  6. 6.
    Nemes, P., Vertes, A.: Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007)CrossRefGoogle Scholar
  7. 7.
    Brady, J.J., Judge, E.J., Levis, R.J.: Nonresonant femtosecond laser vaporization of aqueous protein preserves folded structure. Proc. Natl. Acad. Sci. U. S. A. 108, 12217–12222 (2011)CrossRefGoogle Scholar
  8. 8.
    Hiraoka, K., Nishidate, K., Mori, K., Asakawa, D., Suzuki, S.: Development of probe electrospray using a solid needle. Rapid Commun. Mass Spectrom. 21, 3139–3144 (2007)CrossRefGoogle Scholar
  9. 9.
    Wang, H., Liu, J., Cooks, R.G., Ouyang, Z.: Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew. Chem. Int. Ed. 49, 877–880 (2010)CrossRefGoogle Scholar
  10. 10.
    Hu, B., So, P.-K., Chen, H., Yao, Z.-P.: Electrospray ionization using wooden tips. Anal. Chem. 83, 8201–8207 (2011)CrossRefGoogle Scholar
  11. 11.
    Hu, B., Lai, Y.-H., So, P.-K., Chen, H., Yao, Z.-P.: Direct ionization of biological tissue for mass spectrometric analysis. Analyst 137, 3613–3619 (2012)CrossRefGoogle Scholar
  12. 12.
    Stalder, A.F., Kulik, G., Sage, D., Barbieri, L., Hoffmann, P.: A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf. A 286, 92–103 (2006)CrossRefGoogle Scholar
  13. 13.
    Acero, A.J., Rebollo-Muñoz, N., Montanero, J.M., Gañán-Calvo, A.M., Vega, E.J.: A new flow focusing technique to produce very thin jets. J. Micromech. Microeng. 23, 065009 (2013)CrossRefGoogle Scholar
  14. 14.
    Yoshimura, K., Chen, L.C., Asakawa, D., Hiraoka, K., Takeda, S.: Physical properties of the probe electrospray ionization (PESI) needle applied to the biological samples. J. Mass Spectrom. 44, 978–985 (2009)CrossRefGoogle Scholar
  15. 15.
    Argilés, J.M., Almendro, V., Busquets, S., López-Soriano, F.J.: Cancer cachexia and fat metabolism. In: Mantovani, G., Anker, S.D., Inui, A., Morley, J.E., Fanelli, F.R., Scevola, D., Schuster, M.W., Yeh, S.-S. (eds.) Cachexia and Wasting: A Modern Approach, pp. 459–466. Springer, Milan (2006)CrossRefGoogle Scholar
  16. 16.
    Gebhard, R.L., Clayman, R.V., Prigge, W.F., Figenshau, R., Staley, N.A., Reesey, C., Bear, A.: Abnormal cholesterol metabolism in renal clear cell carcinoma. J. Lipid Res. 28, 1177–1184 (1987)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  1. 1.College of Chemistry and BiologyShenyang Normal UniversityShenyangChina
  2. 2.Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiKofuJapan
  3. 3.Clean Energy Research CenterUniversity of YamanashiKofuJapan
  4. 4.Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuo-kuJapan

Personalised recommendations