Advertisement

Elemental Composition Validation from Stored Waveform Inverse Fourier Transform (SWIFT) Isolation FT-ICR MS Isotopic Fine Structure

  • Brian M. Ruddy
  • Gregory T. Blakney
  • Ryan P. Rodgers
  • Christopher L. Hendrickson
  • Alan G. MarshallEmail author
Application Note

Abstract

Elemental composition assignment confidence in mass spectrometry is typically assessed by monoisotopic mass accuracy. For a given mass accuracy, resolution and detection of other isotopologues can further narrow the number of possible elemental compositions. However, such measurements require ultrahigh resolving power and high dynamic range, particularly for compounds containing low numbers of nitrogen and oxygen (both 15N and 18O occur at less than 0.4 % natural abundance). Here, we demonstrate validation of molecular formula assignment from isotopic fine structure, based on ultrahigh resolution broadband Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Dynamic range is enhanced by external quadrupole and internal stored waveform inverse Fourier transform (SWIFT) isolation to facilitate detection of low abundance heavy atom isotopologues.

Key words

Excitation Dynamic range Mass spectrometry High resolution Isotopologue 

Notes

Acknowledgments

The work was supported by the National Science Foundation (NSF) Division of Materials Research through DMR-11-57490, NSF CHE-10-49753, the BP/The Gulf of Mexico Research Initiative to the Deep-C Consortium, the State of Florida, and NSF grants OCE-1044939 and OCE-1057417. The authors thank Markus Huettel and Joel Kostka for the Pensacola Beach oil spill contaminant sample, and Jeremiah Purcell for the heavy crude oil (bitumen) sample. The authors also thank Joshua Savory, Nathan Kaiser, Amy McKenna, and Jacqueline Jarvis for helpful discussions. Special thanks to John Quinn and Dan McIntosh for design and fabrication of the custom instrument components.

Supplementary material

13361_2013_695_MOESM1_ESM.doc (37 kb)
ESM 1 (DOC 37 kb)
13361_2013_695_MOESM2_ESM.ppt (2 mb)
ESM 2 (PPT 2068 kb)

References

  1. 1.
    Henneberg, D.: Combination of gas chromatography and mass spectrometry for the analysis of organic mixtures. Z. Anal. Chem. 183, 12–23 (1961)CrossRefGoogle Scholar
  2. 2.
    Sweeley, C.C., Elliot, W.H., Fries, I., Ryhage, R.: Mass spectrometric determination of unresolved components in gas chromatic effluents. Anal. Chem. 38, 1549–1553 (1966)CrossRefGoogle Scholar
  3. 3.
    Ledford, E.B., Rempel, D.L., Gross, M.L.: Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 56, 2744–2748 (1984)CrossRefGoogle Scholar
  4. 4.
    Savory, J.J., Kaiser, N.K., McKenna, A.M., Xian, F., Blakney, G.T., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G.: Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a 'walking' calibration equation. Anal. Chem. 83, 1732–1736 (2011)CrossRefGoogle Scholar
  5. 5.
    McLafferty, F.W., Turecek, F.: Interpretation of mass spectra, 4th edn, pp. 19–34. University Science Books, Mill Valley, CA (1993)Google Scholar
  6. 6.
    Nikolaev, E.N., Jertz, R., Grigoryev, A., Baykut, G.: Fine structure in isotopic peak distributions measured using a dynamically harmonized Fourier transform ion cyclotron resonance cell at 7 T. Anal. Chem. 84, 2275–2283 (2012)CrossRefGoogle Scholar
  7. 7.
    Kind, T., Fiehn, O.: Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinforma. 7, 234 (2006)CrossRefGoogle Scholar
  8. 8.
    Kind, T., Fiehn, O.: Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinforma. 8, 105–125 (2007)CrossRefGoogle Scholar
  9. 9.
    Rockwood, A.L., Haimi, P.: Efficient calculation of accurate masses of isotopic peaks. J. Am. Soc. Mass Spectrom. 17, 415–419 (2006)CrossRefGoogle Scholar
  10. 10.
    Budzikiewicz, H., Grigsby, R.D.: Mass spectrometry and isotopes: a century of research and discussion. Mass Spectrom. Rev. 25, 146–157 (2006)CrossRefGoogle Scholar
  11. 11.
    Mitchell, D.W., DeLong, S.E.: Initial relative ion abundances and relaxation times from apodized, segmented FT/ICR time domain signals. Int. J. Mass Spectrom. Ion Processes 96, 1–16 (1990)CrossRefGoogle Scholar
  12. 12.
    Shi, S.D.-H., Hendrickson, C.L., Marshall, A.G.: Counting individual sulfur atoms in a protein by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry: experimental resolution of isotopic fine structure in proteins. Proc. Natl. Acad. Sci. U. S. A. 95, 11532–11537 (1998)CrossRefGoogle Scholar
  13. 13.
    Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282–283 (1974)CrossRefGoogle Scholar
  14. 14.
    Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998)CrossRefGoogle Scholar
  15. 15.
    Peurrung, A.J., Kouzes, R.T.: Long-term coherence of the cyclotron mode in a trapped ion cloud. Phys. Rev. E. 49, 4362–4368 (1994)CrossRefGoogle Scholar
  16. 16.
    Gordon, E.F., Muddiman, D.C.: Impact of ion cloud densities on the measurement of relative ion abundances in Fourier transform ion cyclotron resonance mass spectrometry: experimental observations of Coulombically induced cyclotron radius perturbations and ion cloud dephasing rates. J. Mass Spectrom. 36, 195–203 (2001)CrossRefGoogle Scholar
  17. 17.
    Nikolaev, E.N., Heeren, R.M.A., Popov, A.M., Chingin, K.S.: Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach. Rapid Commun. Mass Spectrom. 21, 3527–3546 (2007)CrossRefGoogle Scholar
  18. 18.
    Boldin, I.A., Nikolaev, E.N.: Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3213–3219 (2009)CrossRefGoogle Scholar
  19. 19.
    Vladimirov, G., Hendrickson, C.L., Blakney, G.T., Marshall, A.G., Heeren, R.M.A., Nikolaev, E.N.: Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion. J. Am. Soc. Mass Spectrom. 23, 375–384 (2012)CrossRefGoogle Scholar
  20. 20.
    Håkansson, K., Chalmers, M.J., Quinn, J.P., McFarland, M.A., Hendrickson, C.L., Marshall, A.G.: Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in an FT-ICR mass spectrometer. Anal. Chem. 13, 3256–3262 (2003)CrossRefGoogle Scholar
  21. 21.
    Marshall, A.G., Wang, T.-C.L., Chen, L., Ricca, T.L.: Tailored excitation for Fourier transform ion cyclotron mass spectrometry. J. Am. Chem. Soc. 107, 7893–7897 (1985)CrossRefGoogle Scholar
  22. 22.
    Guan, S., Marshall, A.G.: Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectrometry: theory and applications. Int. J. Mass Spectrom. Ion Processes 157/158, 5–37 (1996)CrossRefGoogle Scholar
  23. 23.
    Nikolaev, E.N., Boldin, I.A., Jertz, R., Baykut, G.: Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J. Am. Soc. Mass Spectrom. 22, 1125–1133 (2011)CrossRefGoogle Scholar
  24. 24.
    Kaiser, N.K., Quinn, J.P., Blackney, G.T., Hendrickson, C.L., Marshall, A.G.: A novel 9.4 Tesla FTICR mass spectrometer with improved sensitivity, mass resolution, and mass range. J. Am. Soc. Mass Spectrom. 22, 1343–1351 (2011)CrossRefGoogle Scholar
  25. 25.
    Tolmachev, A.V., Robinson, E.W., Wu, S., Kang, H., Lourette, N.M., Pasa-Tolic, L., Smith, R.D.: Trapped-ion cell with improved DC potential harmonicity for FT-ICR MS. J. Am. Soc. Mass Spectrom. 9, 586–597 (2008)CrossRefGoogle Scholar
  26. 26.
    Kaiser, N.K., Savory, J.J., Mckenna, A.M., Quinn, J.P., Hendrickson, C.L., Marshall, A.G.: Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis. Anal. Chem. 83, 6907–6910 (2011)CrossRefGoogle Scholar
  27. 27.
    Senko, M.W., Hendrickson, C.L., Emmett, M.R., Shi, S.D.-H., Marshall, A.G.: External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 970–976 (1997)CrossRefGoogle Scholar
  28. 28.
    Wilcox, B.E., Hendrickson, C.L., Marshall, A.G.: Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. J. Am. Soc. Mass Spectrom. 13, 1304–1312 (2002)CrossRefGoogle Scholar
  29. 29.
    Senko, M.W., Canterbury, J.D., Guan, S., Marshall, A.G.: A high performance modular data system for FT-ICR mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1839–1844 (1996)CrossRefGoogle Scholar
  30. 30.
    Blakney, G.T., Hendrickson, C.L., Marshall, A.G.: Predator data station: a fast acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 306, 246–252 (2011)CrossRefGoogle Scholar
  31. 31.
    Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G.: Automated broadband phase correction of Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 82, 8807–8812 (2010)CrossRefGoogle Scholar
  32. 32.
    Kaiser, N.K., Mckenna, A.M., Savory, J.J., Hendrickson, C.L., Marshall, A.G.: Tailored ion radius distribution for increased dynamic range in FT-ICR mass analysis of complex mixtures. Anal. Chem. 85, 265–272 (2012)CrossRefGoogle Scholar
  33. 33.
    Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K.: Kendrick mass defect spectroscopy: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 73, 4676–4681 (2001)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Brian M. Ruddy
    • 1
  • Gregory T. Blakney
    • 2
  • Ryan P. Rodgers
    • 1
    • 2
  • Christopher L. Hendrickson
    • 1
    • 2
  • Alan G. Marshall
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA
  2. 2.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA

Personalised recommendations