Journal of The American Society for Mass Spectrometry

, Volume 24, Issue 9, pp 1355–1365 | Cite as

Combined Use of Post-Ion Mobility/Collision-Induced Dissociation and Chemometrics for b Fragment Ion Analysis

  • Behrooz Zekavat
  • Mahsan Miladi
  • Christopher Becker
  • Sharon M. Munisamy
  • Touradj SoloukiEmail author
Research Article


Although structural isomers may yield indistinguishable ion mobility (IM) arrival times and similar fragment ions in tandem mass spectrometry (MS), it is demonstrated that post-IM/collision-induced dissociation MS (post-IM/CID MS) combined with chemometrics can enable independent study of the IM-overlapped isomers. The new approach allowed us to investigate the propensity of selected b type fragment ions from AlaAlaAlaHisAlaAlaAla-NH2 (AAA(His)AAA) heptapeptide to form different isomers. Principle component analysis (PCA) of the unresolved post-IM/CID profiles indicated the presence of two different isomer types for b4 +, b5 +, and b6 + and a single isomer type for b7 + fragments of AAA(His)AAA. We employed a simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) to calculate the total IM profiles and CID mass spectra of b fragment isomers. The deconvoluted CID mass spectra showed discernible fragmentation patterns for the two isomers of b4 +, b5 +, and b6 + fragments. Under our experimental conditions, calculated percentages of the “cyclic” isomers (at the 95 % confidence level for n = 3) for b4 +, b5 +, and b6 + were 61 (± 5) %, 36 (± 5) %, and 48 (± 2) %, respectively. Results from the SIMPLISMA deconvolution of b5 + species resembled the CID MS patterns of fully resolved IM profiles for the two b5 + isomers. The “cyclic” isomers for each of the two-component b fragment ions were less susceptible to ion fragmentation than their “linear” counterparts.

Key words

b Fragment ions Chemometrics Collision-induced dissociation (CID) Ion mobility spectrometry (IMS) Mass spectrometry (MS) Principle component analysis (PCA) 



The authors acknowledge the financial support from Baylor University and are very thankful to the staff in Waters Corp. for providing the b5 + post-IM/CID data from a Synapt G2-S HDMS system (data included in the Supporting Information).

Supplementary material

13361_2013_673_MOESM1_ESM.docx (178 kb)
ESM 1 (DOCX 177 kb)


  1. 1.
    Chait, B.T.: Mass spectrometry: Bottom-up or top-down? Science 314, 65–66 (2006)Google Scholar
  2. 2.
    Baldwin, M.A.: Protein identification by mass spectrometry: Issues to be considered. Mol. Cell. Proteom. 3, 1–9 (2004)CrossRefGoogle Scholar
  3. 3.
    Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007)CrossRefGoogle Scholar
  4. 4.
    Lam, H., Aebersold, R.: Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics. Methods 54, 424–431 (2011)CrossRefGoogle Scholar
  5. 5.
    Lubec, G., Afjehi-Sadat, L.: Limitations and pitfalls in protein identification by mass spectrometry. Chem. Rev. 107, 3568–3584 (2007)CrossRefGoogle Scholar
  6. 6.
    Harrison, A.G., Young, A.B., Bleiholder, C., Suhai, S., Paizs, B.: Scrambling of sequence information in collision-induced dissociation of peptides. J. Am. Chem. Soc. 128, 10364–10365 (2006)CrossRefGoogle Scholar
  7. 7.
    Nesvizhskii, A.I., Vitek, O., Aebersold, R.: Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 4, 787–797 (2007)CrossRefGoogle Scholar
  8. 8.
    Roepstorff, P., Fohlman, J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984)CrossRefGoogle Scholar
  9. 9.
    Tang, X.J., Boyd, R.K.: Rearrangements of doubly charged acylium ions from lysyl and ornithyl peptides. Rapid Commun. Mass Spectrom. 8, 678–686 (1994)CrossRefGoogle Scholar
  10. 10.
    Fattahi, A., Solouki, T.: Conformational analysis of metal complexed model peptides and their fragment ions using FT-ICR MS and gas-phase H/D exchange reactions. Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics Chicago, IL (2001)Google Scholar
  11. 11.
    Somogyi, A.: Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments. J. Am. Soc. Mass Spectrom. 19, 1771–1775 (2008)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Yu, L., Steill, J.D., Oomens, J., Polfer, N.C.: Effect of peptide fragment size on the propensity of cyclization in collision-induced dissociation: Oligoglycine b2-b8. J. Am. Chem. Soc. 131, 18272–18282 (2009)CrossRefGoogle Scholar
  13. 13.
    Perkins, B.R., Chamot-Rooke, J., Yoon, S.H., Gucinski, A.C., Somogyi, A., Wysocki, V.H.: Evidence of diketopiperazine and oxazolone structures for HA b2 + ion. J. Am. Chem. Soc. 131, 17528–17529 (2009)CrossRefGoogle Scholar
  14. 14.
    Chen, X., Steill, J.D., Oomens, J., Polfer, N.C.: Oxazolone versus macrocycle structures for leu-enkephalin b2-b4: Insights from infrared multiple-photon dissociation spectroscopy and gas-phase hydrogen/deuterium exchange. J. Am. Soc. Mass Spectrom. 21, 1313–1321 (2010)CrossRefGoogle Scholar
  15. 15.
    Fattahi, A., Zekavat, B., Solouki, T.: H/D exchange kinetics: Experimental evidence for formation of different b fragment ion conformers/isomers during the gas-phase peptide sequencing. J. Am. Soc. Mass Spectrom. 21, 358–369 (2010)CrossRefGoogle Scholar
  16. 16.
    Miladi, M., Zekavat, B., Munisamy, S.M., Solouki, T.: A systematic study on the effect of histidine position and fragment ion size in the formation of bn ions. Int. J. Mass Spectrom 316/318, 164–173 (2012)CrossRefGoogle Scholar
  17. 17.
    Paizs, B., Suhai, S.: Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005)CrossRefGoogle Scholar
  18. 18.
    Bythell, B.J., Knapp-Mohammady, M., Paizs, B., Harrison, A.G.: Effect of the His residue on the cyclization of b ions. J. Am. Soc. Mass Spectrom. 21, 1352–1363 (2010)CrossRefGoogle Scholar
  19. 19.
    Polfer, N.C., Bohrer, B.C., Plasencia, M.D., Paizs, B., Clemmer, D.E.: On the dynamics of fragment isomerization in collision-induced dissociation of peptides. J. Phys. Chem. A 112, 1286–1293 (2008)CrossRefGoogle Scholar
  20. 20.
    Riba Garcia, I., Giles, K., Bateman, R.H., Gaskell, S.J.: Studies of peptide a- and b-type fragment ions using stable isotope labeling and integrated ion mobility/tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 1781–1787 (2008)CrossRefGoogle Scholar
  21. 21.
    Riba-Garcia, I., Giles, K., Bateman, R.H., Gaskella, S.J.: Evidence for structural variants of a- and b-type peptide fragment ions using combined ion mobility/mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 609–613 (2008)CrossRefGoogle Scholar
  22. 22.
    Yoon, S.H., Chamot-Rooke, J., Perkins, B.R., Hilderbrand, A.E., Poutsma, J.C., Wysocki, V.H.: IRMPD spectroscopy shows that AGG forms an oxazolone b2 + ion. J. Am. Chem. Soc. 130, 17644–17645 (2008)CrossRefGoogle Scholar
  23. 23.
    Erlekam, U., Bythell, B.J., Scuderi, D., Van Stipdonk, M., Paizs, B., Maitre, P.: Infrared spectroscopy of fragments of protonated peptides: Direct evidence for macrocyclic structures of b5 ions. J. Am. Chem. Soc. 131, 11503–11508 (2009)CrossRefGoogle Scholar
  24. 24.
    Solouki, T., Zekavat, B., Miladi, M.: On the existence of structurally different isobaric bn fragment ions. Proceedings of the 58th ASMS Conference on Mass Spectrometry and Allied Topics. Salt Lake City, UT, May 23–27 (2010)Google Scholar
  25. 25.
    Lee, S., Li, Z., Valentine, S.J., Zucker, S.M., Webber, N., Reilly, J.P., Clemmer, D.E.: Extracted fragment ion mobility distributions: A new method for complex mixture analysis. Int. J. Mass Spectrom. 309, 154–160 (2012)Google Scholar
  26. 26.
    Creese, A.J., Cooper, H.J.: Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal. Chem. 84, 2597–2601 (2012)CrossRefGoogle Scholar
  27. 27.
    Zekavat, B., Solouki, T.: Chemometric data analysis for deconvolution of overlapped ion mobility profiles. J. Am. Soc. Mass Spectrom. 23, 1873–1884 (2012)CrossRefGoogle Scholar
  28. 28.
    Bateman, R.H., Carruthers, R., Hoyes, J.B., Jones, C., Langridge, J.I., Millar, A., Vissers, J.P.C.: A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J. Am. Soc. Mass Spectrom. 13, 792–803 (2002)CrossRefGoogle Scholar
  29. 29.
    Pringle, S.D., Giles, K., Wildgoose, J.L., Williams, J.P., Slade, S.E., Thalassinos, K., Bateman, R.H., Bowers, M.T., Scrivens, J.H.: An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261, 1–12 (2007)CrossRefGoogle Scholar
  30. 30.
    Pedrioli, P.G., Eng, J.K., Hubley, R., Vogelzang, M., Deutsch, E.W., Raught, B., Pratt, B., Nilsson, E., Angeletti, R.H., Apweiler, R., Cheung, K., Costello, C.E., Hermjakob, H., Huang, S., Julian, R.K., Kapp, E., McComb, M.E., Oliver, S.G., Omenn, G., Paton, N.W., Simpson, R., Smith, R., Taylor, C.F., Zhu, W., Aebersold, R.: A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466 (2004)CrossRefGoogle Scholar
  31. 31.
    massWolf4.3.1. Available at: 2009. Last accessed: March 05, 2012
  32. 32.
    Meloun, M., Čapek, J., Mikšík, P., Brereton, R.G.: Critical comparison of methods predicting the number of components in spectroscopic data. Anal. Chim. Acta 423, 51–68 (2000)CrossRefGoogle Scholar
  33. 33.
    Windig, W., Guilment, J.: Interactive self-modeling mixture analysis. Anal. Chem. 63, 1425–1432 (1991)CrossRefGoogle Scholar
  34. 34.
    Ruotolo, B.T., Benesch, J.L., Sandercock, A.M., Hyung, S.J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008)CrossRefGoogle Scholar
  35. 35.
    Malinowski, E.R.: Determination of the number of factors and the experimental error in a data matrix. Anal. Chem. 49, 612–617 (1977)CrossRefGoogle Scholar
  36. 36.
    Szulejko, J.E., Solouki, T.: Potential analytical applications of interfacing a GC to an FT-ICR MS: Fingerprinting complex sample matrixes. Anal. Chem. 74, 3434–3442 (2002)CrossRefGoogle Scholar
  37. 37.
    Peng, J., Elias, J.E., Thoreen, C.C., Licklider, L.J., Gygi, S.P.: Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: The yeast proteome. J. Proteome Res. 2, 43–50 (2003)CrossRefGoogle Scholar
  38. 38.
    Bleiholder, C., Osburn, S., Williams, T.D., Suhai, S., Van Stipdonk, M., Harrison, A.G., Paizs, B.: Sequence-scrambling fragmentation pathways of protonated peptides. J. Am. Chem. Soc. 130, 17774–17789 (2008)CrossRefGoogle Scholar
  39. 39.
    Molesworth, S., Osburn, S., Van Stipdonk, M.: Influence of size on apparent scrambling of sequence during CID of b-type ions. J. Am. Soc. Mass Spectrom. 20, 2174–2181 (2009)CrossRefGoogle Scholar
  40. 40.
    Morsa, D., Gabelica, V., De Pauw, E.: Effective temperature of ions in traveling wave ion mobility spectrometry. Anal. Chem. 83, 5775–5782 (2011)CrossRefGoogle Scholar
  41. 41.
    Merenbloom, S.I., Flick, T.G., Williams, E.R.: How hot are your ions in TWAVE ion mobility spectrometry? J. Am. Soc. Mass Spectrom. 23, 553–562 (2012)CrossRefGoogle Scholar
  42. 42.
    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)CrossRefGoogle Scholar
  43. 43.
    Sawyer, H.A., Marini, J.T., Stone, E.G., Ruotolo, B.T., Gillig, K.J., Russell, D.H.: The structure of gas-phase bradykinin fragment 1–5 (RPPGF) ions: An ion mobility spectrometry and H/D exchange ion–molecule reaction chemistry study. J. Am. Soc. Mass Spectrom. 16, 893–905 (2005)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Behrooz Zekavat
    • 1
  • Mahsan Miladi
    • 1
  • Christopher Becker
    • 1
  • Sharon M. Munisamy
    • 1
  • Touradj Solouki
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryBaylor University Sciences BuildingWacoUSA

Personalised recommendations