Vacuum Ultraviolet Action Spectroscopy of Polysaccharides

  • Quentin Enjalbert
  • Claire Brunet
  • Arnaud Vernier
  • Abdul-Rahman Allouche
  • Rodolphe Antoine
  • Philippe Dugourd
  • Jérôme Lemoine
  • Alexandre Giuliani
  • Laurent Nahon
Research Article

Abstract

We studied the optical properties of gas-phase polysaccharides (maltose, maltotetraose, and maltohexaose) ions by action spectroscopy using the coupling between a quadrupole ion trap and a vacuum ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility (France) in the 7 to 18 eV range. The spectra provide unique benchmarks for evaluation of theoretical data on electronic transitions of model carbohydrates in the VUV range. The effects of the nature of the charge held by polysaccharide ions on the relaxation processes were also explored. Finally the effect of isomerization of polysaccharides (with melezitose and raffinose) on their photofragmentation with VUV photons is presented.

Key words

Vacuum ultraviolet Spectroscopy Polysaccharides Gas phase Fragmentation Mass spectrometry 

Notes

Acknowledgments

The authors thank the Pôle Scientifique de Modélisation Numérique (PSMN) at Lyon, France, for generous computational facilities. SOLEIL support is acknowledged under project #20110002. This work was supported by the Agence Nationale de la Recherche Scientifique, France, under the project ANR-08-BLAN-0065. The authors also thank the general technical staff of SOLEIL for running the facility. They thank J.-F. Gil for his help in the alignment of the ion trap with respect to the beamline. They thank Stéphane Chambert, Sébastien Redon, and Francis Canon for helpful discussion.

Supplementary material

13361_2013_657_MOESM1_ESM.docx (659 kb)
ESM 1 (DOCX 658 kb)

References

  1. 1.
    Heinze, T. (ed.): Polysaccharides I: Structure, Characterization, and Use. In: Advances in Polymer Science, vol. 186; Springer: Heidelberg, 2005, pp. 1–254Google Scholar
  2. 2.
    Lapasin,R., Pricl, S.: Rheology of Industrial Polysaccharides: Theory and Applications; Springer: Dordrecht, 1995, pp. 1–620Google Scholar
  3. 3.
    Dumitriu, S. (ed.): Polysaccharides. Structural Diversity and Functional Versatility, 2nd ed.; Marcel Dekker: New York, 2004Google Scholar
  4. 4.
    Bubb, W.A.: NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts Magn. Reson. Part A 19A, 1–19 (2003)CrossRefGoogle Scholar
  5. 5.
    Ghosh, D., Golan, A., Takahashi, L.K., Krylov, A.I., Ahmed, M.: A VUV photoionization and ab initio determination of the ionization energy of a gas-phase sugar (deoxyribose). J. Phys. Chem. Lett. 3, 97–101 (2012)CrossRefGoogle Scholar
  6. 6.
    Arndt, E.R., Stevens, E.S.: VUV CD of simple saccharides. J. Am. Chem. Soc. 115, 7849–7853 (1993)CrossRefGoogle Scholar
  7. 7.
    Johnson Jr., W.C.: CD spectroscopy and the VUV region. Ann. Rev. Phys. Chem. 29, 93–114 (1978)CrossRefGoogle Scholar
  8. 8.
    Matsuo, K., Namatame, H., Taniguchi, M., Gekko, K.: VUV CD analysis of glycosaminglycans by SR spectroscopy. Biosci. Biotechnol. Biochem. 73, 557–561 (2009)CrossRefGoogle Scholar
  9. 9.
    Nelson, R.G., Johnson Jr., W.C.: Optical properties of sugars. I. J. Am. Chem. Soc. 94, 3343–3345 (1972)CrossRefGoogle Scholar
  10. 10.
    Nielsen, S.B., Chakraborty, T., Hoffmann, S.V.: SRCD spectroscopy of ribose and desoxyribose sugars, adenosine, AMP and dAMP nucleotides. Chem., Phys., Chem 6, 2619–2624 (2005)CrossRefGoogle Scholar
  11. 11.
    Gekko, K., Yonehara, R., Sakurada, Y., Matsuo, K.: Structure analyses of biomolecules using a SR CD spectrophotometer. J. Electron. Spectrosc. 144/147, 295–297 (2005)CrossRefGoogle Scholar
  12. 12.
    Matsuo, K., Gekko, K.: Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectrophotometry. Carbohydr. Res. 339, 591–597 (2004)CrossRefGoogle Scholar
  13. 13.
    Dickinson, H.R., Johnson Jr., W.C.: Optical spectroscopy of sugars. II. J. Am. Chem. Soc. 96, 5050–5054 (1974)CrossRefGoogle Scholar
  14. 14.
    Simons, J.P., Jockusch, R.A., Carcabal, P., Hung, I., Kroemer, R.T., Macleod, N.A., Snoek, L.C.: Sugars in the gas phase. Spectroscopy, conformation, hydration, cooperativity and selectivity. Int. Rev. Phys. Chem. 24, 489–531 (2005)CrossRefGoogle Scholar
  15. 15.
    Carcabal, P., Jockusch, R.A., Hunig, I., Snoek, L.C., Kroemer, R.T., Davis, B.G., Gamblin, D.P., Compagnon, I., Oomens, J., Simons, J.P.: Hydrogen bonding and cooperativity in isolated and hydrated sugars: Mannose, galactose, glucose, and lactose. J. Am. Chem. Soc. 127, 11414–11425 (2005)CrossRefGoogle Scholar
  16. 16.
    Reilly, J.P.: Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom. Rev. 28, 425–447 (2009)CrossRefGoogle Scholar
  17. 17.
    Devakumar, A., Thompson, M.S., Reilly, J.P.: Fragmentation of oligosaccharide ions with 157 nm vacuum ultraviolet light. Rapid Commun. Mass Spectrom. 19, 2313–2320 (2005)CrossRefGoogle Scholar
  18. 18.
    Devakumar, A., Mechref, Y., Kang, P., Novotny, M.V., Reilly, J.P.: Identification of isomeric N-glycan structures by mass spectrometry with 157 nm laser-induced photofragmentation. J. Am. Soc. Mass Spectrom. 19, 1027–1040 (2008)CrossRefGoogle Scholar
  19. 19.
    Devakumar, A., Mechref, Y., Kang, P., Novotny, M.V., Reilly, J.P.: Laser-induced photofragmentation of neutral and acidic glycans inside an ion-trap mass spectrometer. Rapid Commun. Mass Spectrom. 21, 1452–1460 (2007)CrossRefGoogle Scholar
  20. 20.
    Ko, B.J., Brodbelt, J.S.: 193 nm Ultraviolet Photodissociation of Deprotonated Sialylated Oligosaccharides. Anal. Chem. 83, 8192–8200 (2011)CrossRefGoogle Scholar
  21. 21.
    Antoine, R., Dugourd, P.: Visible and ultraviolet spectroscopy of gas phase protein ions. Phys. Chem. Chem. Phys. 13, 16494–16509 (2011)CrossRefGoogle Scholar
  22. 22.
    Racaud, A., Allouche, A.R., Antoine, R., Lemoine, J., Dugourd, P.: UV electronic excitations in acidic sugars. J. Mol. Struct. (THEOCHEM) 960, 51–56 (2010)CrossRefGoogle Scholar
  23. 23.
    Racaud, A., Antoine, R., Dugourd, P., Lemoine, J.: Photoinduced dissociation of heparin-derived oligosaccharides controlled by charge location. J. Am. Soc. Mass Spectrom. 21, 2077–2084 (2010)CrossRefGoogle Scholar
  24. 24.
    Racaud, A., Antoine, R., Joly, L., Mesplet, N., Dugourd, P., Lemoine, J.: Wavelength-tunable ultraviolet photodissociation (UVPD) of heparin-derived disaccharides in a linear ion trap. J. Am. Soc. Mass Spectrom. 20, 1645–1651 (2009)CrossRefGoogle Scholar
  25. 25.
    Brunet, C., Antoine, R., Allouche, A.R., Dugourd, P., Canon, F., Giuliani, A., Nahon, L.: Gas phase photo-formation and vacuum UV photofragmentation spectroscopy of tryptophan and tyrosine radical-containing peptides. J. Phys. Chem. A 115, 8933–8939 (2011)CrossRefGoogle Scholar
  26. 26.
    Brunet, C., Antoine, R., Dugourd, P., Canon, F., Giuliani, A., Nahon, L.: Formation and fragmentation of radical peptide anions: Insights from vacuum ultra violet spectroscopy. J. Am. Soc. Mass Spectrom. 23, 274–281 (2012)CrossRefGoogle Scholar
  27. 27.
    Milosavljevic, A.R., Nicolas, C., Gil, J.F., Canon, F., Refregiers, M., Nahon, L., Giuliani, A.: VUV synchrotron radiation: A new activation technique for tandem mass spectrometry. J. Sync. Rad. 19, 174–178 (2012)CrossRefGoogle Scholar
  28. 28.
    Milosavljevic, A.R., Nicolas, C., Lemaire, J., Dehon, C., Thissen, R., Bizau, J.M., Refregiers, M., Nahon, L., Giuliani, A.: Photoionization of a protein isolated in vacuo. Phys. Chem. Chem. Phys. 13, 15432–15436 (2011)CrossRefGoogle Scholar
  29. 29.
    Nahon, L., de Oliveira, N., Garcia, G.A., Gil, J.F., Pilette, B., Marcouille, O., Lagarde, B., Polack, F.: DESIRS: A state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J. Synchrot. Radiat. 19, 50–520 (2012)CrossRefGoogle Scholar
  30. 30.
    Mercier, B., Compin, M., Prevost, C., Bellec, G., Thissen, R., Dutuit, O., Nahon, L.: Experimental and theoretical study of a differentially pumped absorption gas cell used as a low energy-pass filter in the vacuum ultraviolet photon energy range. J. Vac. Sci. Technol. A Vac. Surf. Films 18, 2533–2541 (2000)CrossRefGoogle Scholar
  31. 31.
    Milosavljevic, A.R., Nicolas, C., Gil, J.F., Canon, F., Refregiers, M., Nahon, L., Giuliani, A.: Fast in vacuo photon shutter for synchrotron radiation quadrupole ion trap tandem mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 279, 34–36 (2012)CrossRefGoogle Scholar
  32. 32.
    Larraillet, V., Antoine, R., Dugourd, P., Lemoine, J.: Activated-electron photodetachment dissociation for the structural characterization of protein polyanions. Anal. Chem. 81, 8410–8416 (2009)CrossRefGoogle Scholar
  33. 33.
    Talbot, F.O., Tabarin, T., Antoine, R., Broyer, M., Dugourd, P.: Photo-Dissociation spectroscopy of trapped protonated tryptophan. J. Chem. Phys. 122, 074310 (2005)CrossRefGoogle Scholar
  34. 34.
    Joly, L., Antoine, R., Allouche, A.R., Broyer, M., Lemoine, J., Dugourd, P.: Ultraviolet spectroscopy of peptide and protein polyanions in vacuo: Signature of the ionization state of tyrosine. J. Am. Chem. Soc. 129, 8428–8429 (2007)CrossRefGoogle Scholar
  35. 35.
    Korth, M., Pitonak, M., Rezac, J., Hobza, P.: A transferable H-bonding correction for semiempirical quantum-chemical methods. J. Chem. Theory Comput. 6, 344–352 (2009)CrossRefGoogle Scholar
  36. 36.
    Stewart, J.J.P.: Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007)CrossRefGoogle Scholar
  37. 37.
    Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76, 637–649 (1982)CrossRefGoogle Scholar
  38. 38.
    Bussi, G., Parrinello, M.: Stochastic thermostats: Comparison of local and global schemes. Comput. Phys. Commun. 179, 26–29 (2008)CrossRefGoogle Scholar
  39. 39.
    Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)CrossRefGoogle Scholar
  40. 40.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)Google Scholar
  41. 41.
    Lee, C., Yang, W., Parr, R.: Development of the Colle-Salvetti Correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  42. 42.
    Dunning Jr., T.H.: Rates of convergence and error estimation formulas for the Rayleigh-Ritz variational method. J. Chem. Phys. 90, 1007–1023 (1989)CrossRefGoogle Scholar
  43. 43.
    Kendall, R.A., Dunning Jr., T.H., Harrison, R.J.: Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992)Google Scholar
  44. 44.
    Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)CrossRefGoogle Scholar
  45. 45.
    Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., Hirao, K.: A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120, 8425–8433 (2004)CrossRefGoogle Scholar
  46. 46.
    Antoine, R., Joly, L., Tabarin, T., Broyer, M., Dugourd, P., Lemoine, J.: Photo-induced formation of radical anion peptides. Electron photodetachment dissociation experiments. Rapid Commun. Mass Spectrom. 21, 265–268 (2007)CrossRefGoogle Scholar
  47. 47.
    Joly, L., Antoine, R., Broyer, M., Lemoine, J., Dugourd, P.: Electron photodetachment from gas phase peptide dianions. Relation with optical absorption properties. J. Phys. Chem. A 112, 898–903 (2008)CrossRefGoogle Scholar
  48. 48.
    Martin, R.L.: Natural transition orbitals. J. Chem. Phys. 118, 4775–4777 (2003)CrossRefGoogle Scholar
  49. 49.
    Robin, M.B.: Higher excited states of polyatomic molecules, vol. III. Academic Press, Orlando (1985)Google Scholar
  50. 50.
    Cederbaum, L.S., Zobeley, J., Tarantelli, F.: Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778–4781 (1997)CrossRefGoogle Scholar
  51. 51.
    Simons, J.: Molecular anions. J. Phys. Chem. A 112, 6401–6511 (2008)CrossRefGoogle Scholar
  52. 52.
    Matheis, K., Joly, L., Antoine, R., Lepine, F., Bordas, C., Ehrler, O.T., Allouche, A.-R., Kappes, M.M., Dugourd, P.: Photoelectron spectroscopy of gramicidin polyanions: Competition between delayed and direct emission. J. Am. Chem. Soc. 130, 15903–15906 (2008)CrossRefGoogle Scholar
  53. 53.
    Harvey, D.J.: Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. J. Mass Spectrom. 35, 1178–1190 (2000)CrossRefGoogle Scholar
  54. 54.
    Lemoine, J., Fournet, B., Despeyroux, D., Jennings, K.R., Rosenberg, R., Dehoffmann, E.: Collision-induced dissociation of alkali-metal cationized and permethylated oligosaccharides—influence of the collision energy and of the collision gas for the assignment of linkage position. J. Am. Soc. Mass Spectrom. 4, 197–203 (1993)CrossRefGoogle Scholar
  55. 55.
    Zucker, S., Lee, S., Webber, N., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: An ion mobility/ion trap/photodissociation instrument for characterization of ion structure. J. Am. Soc. Mass Spectrom. 22, 1477–1485 (2011)CrossRefGoogle Scholar
  56. 56.
    Lee, S., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 309, 161–167 (2012)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Quentin Enjalbert
    • 1
    • 2
    • 3
  • Claire Brunet
    • 1
    • 2
  • Arnaud Vernier
    • 1
    • 2
    • 3
    • 4
  • Abdul-Rahman Allouche
    • 1
    • 2
  • Rodolphe Antoine
    • 1
    • 2
  • Philippe Dugourd
    • 1
    • 2
  • Jérôme Lemoine
    • 1
    • 3
  • Alexandre Giuliani
    • 5
    • 6
  • Laurent Nahon
    • 5
  1. 1.Université Lyon 1-CNRS, Université de LyonVilleurbanne cedexFrance
  2. 2.UMR5306, Institut Lumière MatièreVilleurbanneFrance
  3. 3.UMR5180, Sciences AnalytiquesVilleurbanneFrance
  4. 4.R&D Proteomique, bioMérieux SAMarcy l’EtoileFrance
  5. 5.SOLEIL, l’Orme des Merisiers, St AubinGif sur Yvette CedexFrance
  6. 6.UAR1008, Cepia, Institut National de la Recherche Agronomique (INRA)Nantes Cedex 3France

Personalised recommendations