Advertisement

Instrumental Dependent Dissociations of n-Propyl/Isopropyl Phosphonate Isomers: Evaluation of Resonant and Non-Resonant Vibrational Activations

  • Chafia Bennaceur
  • Carlos Afonso
  • Sandra Alves
  • Anne Bossée
  • Jean-Claude Tabet
Research Article

Abstract

Structural elucidation and distinction of isomeric neurotoxic agents remain a challenge. Tandem mass spectrometry can be used for this purpose in particular if a “diagnostic” product ion is observed. Different vibrational activation methods were investigated to enhance formation of diagnostic ions through consecutive processes from O,O-dialkyl alkylphosphonates. Resonant and non-resonant collisional activation and infrared multiphoton dissociation (IRMPD) were used with different mass spectrometers: a hybrid quadrupole Fourier transform ion cyclotron resonance (Qh-FTICR) and a hybrid linear ion trap-Orbitrap (LTQ/Orbitrap). Double resonance (DR) experiments, in ion cyclotron resonance (ICR) cell, were used for unambiguous determination of direct intermediate yielding diagnostic ions. From protonated n-propyl and isopropyl O-O-dialkyl-phosphonates, a diagnostic m/z 83 ion characterizes the isopropyl isomer. This ion is produced through consecutive dissociation processes. Conditions to favor its formation and observation using different activation methods were investigated. It was shown that with the LTQ, consecutive experimental steps of isolation/activation with modified trapping conditions limiting the low mass cut off (LMCO) effect were required, whereas with FT-ICR by CID and IRMPD the diagnostic ion detection was provided only by one activation step. Among the different investigated activation methods it was shown that by using low-pressure conditions or using non-resonant methods, efficient and fast differentiation of isomeric neurotoxic agents was obtained. This work constitutes a unique comparison of different activation modes for distinction of isomers showing the instrumental dependence characteristic of the consecutive processes. New insights in the dissociation pathways were obtained based on double-resonance IRMPD experiments using a FT-ICR instrument with limitation at low mass values.

Key words

Activation processes SORI-CID IRMPD Phosphonate isomer distinction Double resonance Instrument influence 

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the Délégation Général de l’Armement (DGA) and the CNRS and the university Pierre and Marie Curie. The SM3P platform is also acknowledged.

References

  1. 1.
    Creasy, W.R., Stuff, J.R., Williams, B., Morrissey, K., Mays, J., Duevel, R., Durst, H.D.: Identification of chemical weapons-related compounds in decontamination solutions and other matrixes by multiple chromatographic techniques. J. Chromatogr. A 774, 253–263 (1997)CrossRefGoogle Scholar
  2. 2.
    Kim, K., Tsay, O.G., Atwood, D.A., Churchill, D.G.: Destruction and detection of chemical warfare agents. Chem. Rev. 111, 5345–5403 (2011)CrossRefGoogle Scholar
  3. 3.
    Owens, J., Koester, C.: Quantitative analysis of chemical warfare agent degradation products in beverages by liquid chromatography tandem mass spectrometry. J. Agric. Food Chem. 57, 8227–8235 (2009)CrossRefGoogle Scholar
  4. 4.
    Tsuge, K., Seto, Y.: Mass spectrometric identification of chemical warfare agent adducts with biological macromolecule for verification of their exposure. J. Health Sci. 55, 879–886 (2009)CrossRefGoogle Scholar
  5. 5.
    Van Baar, B.L.M., Hulst, A.G., Wils, E.R.J.: Identification of the C3H7 moiety of isopropyl- and propylphosphonates by electrospray tandem mass spectrometry. J. Mass Spectrom. 33, 1104–1108 (1998)CrossRefGoogle Scholar
  6. 6.
    Desoubries, C., Chapuis-Hugon, F., Bossee, A., Pichon, V.: Three-phase hollow fiber liquid-phase microextraction of organophosphorous nerve agent degradation products from complex samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 900, 48–58 (2012)CrossRefGoogle Scholar
  7. 7.
    Mechin, N., Plomley, J., March, R.E., Blasco, T., Tabet, J.C.: Formation of protonated phosphonates in the ion-trap mass spectrometer under electron impact conditions. Rapid Commun. Mass Spectrom. 9, 5–8 (1995)CrossRefGoogle Scholar
  8. 8.
    Lagarrigue, M., Bossee, A., Begos, A., Varenne, A., Gareil, P., Bellier, B.: Separation and identification of isomeric acidic degradation products of organophosphorus chemical warfare agents by capillary electrophoresis-ion trap mass spectrometry. J. Chromatogr. A 1137, 110–118 (2006)CrossRefGoogle Scholar
  9. 9.
    Petersson, F., Sulzer, P., Mayhew, C.A., Watts, P., Jordan, A., Maerk, L., Maerk, T.D.: Real-time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3875–3880 (2009)CrossRefGoogle Scholar
  10. 10.
    Cordell, R.L., Willis, K.A., Wyche, K.P., Blake, R.S., Ellis, A.M., Monks, P.S.: Detection of chemical weapon agents and simulants using chemical ionization reaction time-of-flight mass spectrometry. Anal. Chem. 79, 8359–8366 (2007)CrossRefGoogle Scholar
  11. 11.
    Steiner, W.E., Klopsch, S.J., English, W.A., Clowers, B.H., Hill, H.H.: Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry. Anal. Chem. 77, 4792–4799 (2005)CrossRefGoogle Scholar
  12. 12.
    Ferreira, D.E.C., Florentino, B.P.D., Rocha, W.R., Nome, F.: Quantum mechanical/effective fragment potential (qm/efp) study of phosphate monoester aminolysis in aqueous solution. J. Phys. Chem. B 113, 14831–14836 (2009)CrossRefGoogle Scholar
  13. 13.
    Cooper, D.B., Read, R.W., Timperley, C.M., Williams, N.H., Black, R.M.: Identification of iso- and n-propylphosphonates using liquid chromatography-tandem mass spectrometry and gas chromatography-Fourier transform infrared spectroscopy. J. Chromatogr. A 1040, 83–95 (2004)CrossRefGoogle Scholar
  14. 14.
    Bowers, M.T., Elleman, D.D., Beauchamp, J.L.: Ion cyclotron resonance of olefins. I. Study of the ion–molecule reactions in electron-impacted ethylene. J. Phys. Chem. 72, 3599–3612 (1968)CrossRefGoogle Scholar
  15. 15.
    Freiser, B.S., McMahon, T.B., Beauchamp, J.L.: Ion ejection phenomena in ion cyclotron double resonance experiments. Int. J. Mass Spectrom. Ion Phys. 12, 249–255 (1973)CrossRefGoogle Scholar
  16. 16.
    Bourgoin-Voillard, S., Zins, E.L., Fournier, F., Jacquot, Y., Afonso, C., Pepe, C., Leclercq, G., Tabet, J.C.: Stereochemical Effects During M-H (−) Dissociations of epimeric 11-OH-17 beta-estradiols and distant electronic effects of substituents at C-(11) position on gas phase acidity. J. Am. Soc. Mass Spectrom. 20, 2318–2333 (2009)CrossRefGoogle Scholar
  17. 17.
    McLuckey, S.A., Goeringer, D.E.: Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997)CrossRefGoogle Scholar
  18. 18.
    Vekey, K.: Internal energy effects in mass spectrometry. J. Mass Spectrom. 31, 445–463 (1996)CrossRefGoogle Scholar
  19. 19.
    Liere, P., Blasco, T., March, R.E., Tabet, J.C.: Influence of cooling time on the internal energy of ion subjected to resonance excitation in a quadrupole ion trap. Rapid Commun. Mass Spectrom. 8, 953–956 (1994)CrossRefGoogle Scholar
  20. 20.
    Liere, P., Bouchonnet, S., March, R.E., Tabet, J.C.: Cooling time and pressure effects on competitive thermalization/activation processes by resonance excitation on ITMS. Rapid Commun. Mass Spectrom. 9, 1594–1598 (1995)CrossRefGoogle Scholar
  21. 21.
    Liere, P., Steiner, V., Jennings, K.R., March, R.E., Tabet, J.C.: Influence of ion activation and thermalization effects on reaction rate constants in a quadrupole ion trap mass spectrometer. Int. J. Mass Spectrom. Ion Processes 167/168, 735–751 (1997)CrossRefGoogle Scholar
  22. 22.
    Wu, H.F., Brodbelt, J.S.: Effects of collisional cooling on ion detection in a quadrupole ion trap mass spectrometer. Int. J. Mass Spectrom. Ion Processes 115, 67–81 (1992)CrossRefGoogle Scholar
  23. 23.
    Black, D.M., Payne, A.H., Glish, G.L.: Determination of cooling rates in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 17, 932–938 (2006)CrossRefGoogle Scholar
  24. 24.
    Steiner, V., Daoust-Maleval, I., Tabet, J.C.: Study of gas-phase reactivity of positive and negative even-electron ions prepared from diethylmethyl phosphonate ester in an external chemical ionization source of orthogonal tandem quadrupole/ion trap instrument. Int. J. Mass Spectrom. 195/196, 121–138 (2000)CrossRefGoogle Scholar
  25. 25.
    March, R.E.: An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 32, 351–369 (1997)CrossRefGoogle Scholar
  26. 26.
    Laskin, J., Futrell, J.H.: Activation of large lons in FT-ICR mass spectrometry. Mass Spectrom. Rev. 24, 135–167 (2005)CrossRefGoogle Scholar
  27. 27.
    Herrmann, K.A., Somogyi, A., Wysocki, V.H., Drahos, L., Vekey, K.: Combination of sustained off-resonance irradiation and on-resonance excitation in FT-ICR. Anal. Chem. 77, 7626–7638 (2005)CrossRefGoogle Scholar
  28. 28.
    Laskin, J., Futrell, J.: Internal energy distributions resulting from sustained off-resonance excitation in fourier transform ion cyclotron resonance mass spectrometry. II. Fragmentation of the 1-bromonaphthalene radical cation. J. Phys. Chem. A 104, 5484–5494 (2000)CrossRefGoogle Scholar
  29. 29.
    Tonner, D.S., McMahon, T.B.: Consecutive infrared multiphoton dissociations in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem. 69, 4735–4740 (1997)CrossRefGoogle Scholar
  30. 30.
    Olsen, J.V., Macek, B., Lange, O., Makarov, A., Horning, S., Mann, M.: Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4, 709–712 (2007)CrossRefGoogle Scholar
  31. 31.
    Crowe, M.C., Brodbelt, J.S.: Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociation of peptides in a quadrupole ion trap with selective IRMPD of phosphopeptides. J. Am. Soc. Mass Spectrom. 15, 1581–1592 (2004)CrossRefGoogle Scholar
  32. 32.
    Nguyen, V.H., Afonso, C., Tabet, J.-C.: Concomitant EDD and EID of DNA evidenced by MSn and double resonance experiments. Int. J. Mass Spectrom. 301, 224–233 (2011)CrossRefGoogle Scholar
  33. 33.
    Perot-Taillandier, M., Zirah, S., Rebuffat, S., Linne, U., Marahiel, M.A., Cole, R.B., Tabet, J.C., Afonso, C.: Determination of peptide topology through time-resolved double-resonance under electron capture dissociation conditions. Anal. Chem. 84, 4957–4964 (2012)CrossRefGoogle Scholar
  34. 34.
    Afonso, C., Lesage, D., Fournier, F., Mancel, V., Tabet, J.-C.: Origin of enantioselective reduction of quaternary copper d, l amino acid complexes under vibrational activation conditions. Int. J. Mass Spectrom. 312, 185–194 (2012)CrossRefGoogle Scholar
  35. 35.
    Lioe, H., O'Hair, R.A.J.: Neighbouring group processes in the deamination of protonated phenylalanine derivatives. Org. Biomol. Chem. 3, 3618–3628 (2005)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Chafia Bennaceur
    • 1
  • Carlos Afonso
    • 2
  • Sandra Alves
    • 1
  • Anne Bossée
    • 3
  • Jean-Claude Tabet
    • 1
  1. 1.Université Pierre et Marie CurieParisFrance
  2. 2.Université de Rouen, CNRS UMR 6014 COBRA, INSA de RouenMont-Saint-AignanFrance
  3. 3.DGA CBRN DefenceVert-le-PetitFrance

Personalised recommendations