Particle Production in Reflection and Transmission Mode Laser Ablation: Implications for Laserspray Ionization

Research Article

Abstract

Particles were ablated from laser desorption and inlet ionization matrix thin films with a UV laser in reflection and transmission geometries. Particle size distributions were measured with a combined scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) system that measured particles in the size range from 10 nm to 20 μm. The matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 2,5-dihydroxy-acetophenone (DHAP), and 2-nitrophloroglucinol (NPG). Nanoparticles with average diameters between 20 and 120 nm were observed in both transmission and reflection geometry. The particle mass distribution was significantly different in reflection and transmission geometry. In reflection geometry, approximately equal mass was distributed between particles in the 20 to 450 nm range of diameters and particles in the 450 nm to 1.5 μm diameter range. In transmission mode, the particle mass distribution was dominated by large particles in the 2 to 20 μm diameter range. Ablation of inlet ionization matrices DHAP and NPG produced particles that were 3 to 4 times smaller compared with the other matrices. The results are consistent with ion formation by nanoparticle melting and breakup or melting and breakup of the large particles through contact with heated inlet surfaces.

Key words

Laser Ablation Ambient ionization Ionization mechanism 

References

  1. 1.
    Trimpin, S., Inutan, E.D., Herath, T.N., McEwen, C.N.: Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions. Mol. Cel. Proteom. 9, 362–367 (2010)CrossRefGoogle Scholar
  2. 2.
    Trimpin, S., Inutan, E.D., Herath, T.N., McEwen, C.N.: Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. Anal. Chem. 82, 11–15 (2010)CrossRefGoogle Scholar
  3. 3.
    Inutan, E.D., Wang, B., Trimpin, S.: Commercial Intermediate Pressure MALDI Ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions. Anal. Chem. 83, 678–684 (2011)CrossRefGoogle Scholar
  4. 4.
    Trimpin, S., Ren, Y., Wang, B., Lietz, C.B., Richards, A.L., Marshall, D.D., Inutan, E.D.: Extending the laserspray ionization concept to produce highly charged ions at high vacuum on a time-of-flight mass analyzer. Anal. Chem. 83, 5469–5475 (2011)CrossRefGoogle Scholar
  5. 5.
    Overberg, A., Karas, M., Bahr, U., Kaufmann, S., Hillenkamp, F.: Matrix-assisted infrared-laser (2.94 mm) desorption/ionization mass spectrometry of large biomolecules. Rapid Commun. Mass Spectrom 4, 293–296 (1990)CrossRefGoogle Scholar
  6. 6.
    Overberg, A., Karas, M., Hillenkamp, F.: Matrix-assisted laser desorption of large biomolecules with a TEA-CO2-Laser. Rapid Commun. Mass Spectrom. 5, 128–131 (1991)CrossRefGoogle Scholar
  7. 7.
    Menzel, C., Dreisewerd, K., Berkenkamp, S., Hillenkamp, F.: The role of the laser pulse duration in infrared matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 975–984 (2002)CrossRefGoogle Scholar
  8. 8.
    McEwen, C.N., Trimpin, S.: An alternative ionization paradigm for atmospheric pressure mass spectrometry: Flying elephants from Trojan horses. Int. J. Mass Spectrom. 300, 167–172 (2011)CrossRefGoogle Scholar
  9. 9.
    Zilch, L.W., Maze, J.T., Smith, J.W., Ewing, G.E., Jarrold, M.F.: Charge separation in the aerodynamic breakup of micrometer-sized water droplets. J. Phys. Chem. A 112, 13352–13363 (2008)CrossRefGoogle Scholar
  10. 10.
    Musapelo, T., Murray, K.K.: Particle formation in ambient MALDI Plumes. Anal. Chem 83, 6601–6608 (2011)CrossRefGoogle Scholar
  11. 11.
    Alves, S., Kalberer, M., Zenobi, R.: Direct detection of particles formed by laser ablation of matrices during matrix-assisted laser desorption/ionization. Rapid. Commun. Mass. Spectrom. 17, 2034–2038 (2003)CrossRefGoogle Scholar
  12. 12.
    Jackson, S.N., Mishra, S., Murray, K.K.: Characterization of coarse particles formed by laser ablation of MALDI matrixes. J. Phys. Chem. B 107, 13106–13110 (2003)CrossRefGoogle Scholar
  13. 13.
    Kim, J.-K., Jackson, S.N., Murray, K.K.: Matrix-assisted laser desorption/ionization mass spectrometry of collected bioaerosol particles. Rapid Commun. Mass Spectrom. 19, 1725–1729 (2005)CrossRefGoogle Scholar
  14. 14.
    Fan, X., Little, M.W., Murray, K.K.: Infrared laser wavelength dependence of particles ablated from glycerol. Appl. Surf. Sci 255, 1699–1704 (2008)CrossRefGoogle Scholar
  15. 15.
    Li, J., Inutan, E.D., Wang, B., Lietz, C.B., Green, D.R., Manly, C.D., Richards, A.L., Marshall, D.D., Lingenfelter, S., Ren, Y., Trimpin, S.: Matrix assisted ionization: New aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces. J. Am. Soc. Mass Spectrom. 23, 1625–1643 (2012)CrossRefGoogle Scholar
  16. 16.
    Zhigilei, L.V., Yingling, Y.G., Itina, T.E., Schoolcraft, T.A., Garrison, B.J.: Molecular dynamics simulations of matrix-assisted laser desorption-connections to experiment. Int. J. Mass. Spectrom. 226, 85–106 (2003)CrossRefGoogle Scholar
  17. 17.
    Miotello, A., Kelly, R.: Laser-induced phase explosion: New physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A 69, S67–S73 (1999)Google Scholar
  18. 18.
    Zhigilei, L.V., Garrison, B.J.: Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys. 88, 1281–1298 (2000)CrossRefGoogle Scholar
  19. 19.
    Apitz, I., Vogel, A.: Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A 81, 329–338 (2005)CrossRefGoogle Scholar
  20. 20.
    Vogel, A., Venugopalan, V.: Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003)CrossRefGoogle Scholar
  21. 21.
    Knochenmuss, R., Zhigilei, L.V.: Molecular dynamics model of ultraviolet matrix-assisted laser desorption/ionization including ionization processes. J. Phys. Chem. B 109, 22947–22957 (2005)CrossRefGoogle Scholar
  22. 22.
    Leisner, A., Rohlfing, A., Rohling, U., Dreisewerd, K., Hillenkamp, F.: Time-resolved imaging of the plume dynamics in infrared matrix-assisted laser desorption/ionization with a glycerol matrix. J. Phys. Chem. B 109, 11661–11666 (2005)CrossRefGoogle Scholar
  23. 23.
    Zhigilei, L.V., Ivanov, D.S., Leveugle, E., Sadigh, B., Bringa, E.M.: Computer simulations of laser ablation from simple metals to complex metallic alloys. Proceedings of SPIE 5448, 505–519 (2004)CrossRefGoogle Scholar
  24. 24.
    Nikolayev, V.S., Beysens, D.A.: Boiling crisis and non-equilibrium drying transition. Europhys. Lett. 47, 345–351 (1999)CrossRefGoogle Scholar
  25. 25.
    Bulgakova, N.M., Bulgakov, A.V.: Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion. Appl. Phys. A 73, 199–208 (2001)CrossRefGoogle Scholar
  26. 26.
    Galicia, M., Vertes, A., Callahan, J.: Atmospheric pressure matrix-assisted laser desorption/ionization in transmission geometry. Anal. Chem. 74, 1891–1895 (2002)CrossRefGoogle Scholar
  27. 27.
    Trimpin, S., Wang, B., Inutan, E.D., Li, J., Lietz, C.B., Harron, A., Pagnotti, V.S., Sardelis, D., McEwen, C.N.: A mechanism for ionization of nonvolatile compounds in mass spectrometry: Considerations from MALDI and inlet ionization. J. Am. Soc. Mass Spectrom. 23, 1644–1660 (2012)CrossRefGoogle Scholar
  28. 28.
    Frankevich, V., Nieckarz, R.J., Sagulenko, P.N., Barylyuk, K., Zenobi, R., Levitsky, L.I., Agapov, A.Y., Perlova, T.Y., Gorshkov, M.V., Tarasova, I.A.: Probing the mechanisms of ambient ionization by laser-induced fluorescence spectroscopy. Rapid Commun. Mass Spectrom. 26, 1567–1572 (2012)CrossRefGoogle Scholar
  29. 29.
    Costa, A.B.; Cooks, R.G.: Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization. Chem. Commun. 3915–3917. doi: 10.1039/b710511h (2007)
  30. 30.
    Costa, A.B., Cooks, R.G.: Simulated splashes: Elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem. Phys. Lett. 464, 1–8 (2008)CrossRefGoogle Scholar
  31. 31.
    Huang, F., Murray, K.K.: Finite element simulation of infrared laser ablation for mass spectrometry. Rapid Commun. Mass Spectrom. 26, 2145–2150 (2012)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA

Personalised recommendations