Advertisement

Analysis of the Formation Process of Gold Nanoparticles by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry

  • Iva Tomalová
  • Chia-Hsin Lee
  • Wen-Tsen Chen
  • Cheng-Kang Chiang
  • Huan-Tsung ChangEmail author
  • Jan PreislerEmail author
Application Note

Abstract

Chemical reactions of reducing agents in the gold nanoparticle (AuNP) formation process were characterized using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). As the reaction of the AuNPs progresses, the produced AuNPs can serve as an efficient SALDI substrate. SALDI-MS revealed that the reducing agents and their oxidation products can be determined in the mass spectra. With respect to the transmission electron microscopic and UV-Vis spectroscopic examination of AuNPs, SALDI-MS results confirm not only the tendency toward AuNPs formation, but also reflect the information of the redox reaction process. Our results provide useful information for developing SALDI-MS methods to explore the chemical information regarding the surface behavior between adsorbates and nanomaterials.

Key words

Nanomaterials Gold nanoparticle Surface-assisted laser desorption/ionization mass spectrometry SALDI Nanoparticle formation process 

Notes

Acknowledgment

This study was supported by the Czech Science Foundation P206/10/J012 and the Ministry of Education, Youth, and Sports of the Czech Republic CZ.1.05/1.1.00/02.0068, and the National Science Council of Taiwan under contracts NSC 101-2113-M-002-002-MY3 and NSC 99-2923-M-002-004-MY3. I.T. is supported by Brno City Municipality Scholarships for Talented Ph.D. Students.

Supplementary material

13361_2012_541_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1170 kb)

References

  1. 1.
    Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004)CrossRefGoogle Scholar
  2. 2.
    Pissuwan, D., Niidome, T., Cortie, M.B.: The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149(1), 65–71 (2011)CrossRefGoogle Scholar
  3. 3.
    Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discus. Faraday Soc. 11, 55–75 (1951)Google Scholar
  4. 4.
    Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.: Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994)CrossRefGoogle Scholar
  5. 5.
    Bhargava, S.K., Booth, J.M., Agrawal, S., Coloe, P., Kar, G.: Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21(13), 5949–5956 (2005)CrossRefGoogle Scholar
  6. 6.
    Baron, R., Zayats, M., Willner, I.: Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal. Chem. 77(6), 1566–1571 (2005)CrossRefGoogle Scholar
  7. 7.
    Mandal, S., Selvakannan, P., Phadtare, S., Pasricha, R., Sastry, M.: Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. P. Indian AS. Chem. Sci. 114(5), 513–520 (2002)CrossRefGoogle Scholar
  8. 8.
    Sanpui, P., Pandey, S.B., Ghosh, S.S., Chattopadhyay, A.: Green fluorescent protein for in situ synthesis of highly uniform Au nanoparticles and monitoring protein denaturation. J. Colloid Interf. Sci. 326(1), 129–137 (2008)CrossRefGoogle Scholar
  9. 9.
    Ravindra, P.: Protein-mediated synthesis of gold nanoparticles. Mater. Sci. Eng. B 163(2), 93–98 (2009)CrossRefGoogle Scholar
  10. 10.
    Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., Sastry, M.: Biological synthesis of triangular gold nanoprisms. Nature Mater. 3(7), 482–488 (2004)CrossRefGoogle Scholar
  11. 11.
    Grenha, A., Seijo, B., Serra, C., Remunan-Lopez, C.: Surface characterization of lipid/chitosan nanoparticles assemblies, using X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. J. Nanosci. Nanotechnol. 8(1), 358–365 (2008)Google Scholar
  12. 12.
    Nishio, K., Gokon, N., Tsubouchi, S., Ikeda, M., Narimatsu, H., Sakamoto, S., Izumi, Y., Abe, M., Handa, H.: Direct detection of redox reactions of sulfur-containing compounds on ferrite nanoparticle (FP) surface. Chem. Lett. 35(8), 974–975 (2008)CrossRefGoogle Scholar
  13. 13.
    Booth, J.M., Bhargava, S.K., Bond, A.M., O'Mullane, A.P.: Voltammetric monitoring of gold nanoparticle formation facilitated by glycyl-L-tyrosine: relation to electronic spectra and transmission electron microscopy images. J. Phys. Chem. B 110(25), 12419–12426 (2006)CrossRefGoogle Scholar
  14. 14.
    Muller, C.I., Lambert, C.: Electrochemical and optical characterization of triarylamine functionalized gold nanoparticles. Langmuir 27(8), 5029–5039 (2011)CrossRefGoogle Scholar
  15. 15.
    Sunner, J., Dratz, E., Chen, Y.C.: Graphite surface assisted laser desorption/ionization time-of-flight mass spectrometry of peptide and proteins from liquid solutions. Anal. Chem. 67(23), 4335–4342 (1995)CrossRefGoogle Scholar
  16. 16.
    Chiang, C.K., Chen, W.T., Chang, H.T.: Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem. Soc. Rev. 40(3), 1269–1281 (2011)CrossRefGoogle Scholar
  17. 17.
    Lin, Y.W., Chen, W.T., Chang, H.T.: Exploring the interactions between gold nanoparticles and analytes through surface-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 24(7), 933–938 (2010)CrossRefGoogle Scholar
  18. 18.
    Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.: Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2(8), 151–153 (1988)CrossRefGoogle Scholar
  19. 19.
    Chiang, C.K., Lin, Y.W., Chen, W.T., Chang, H.T.: Accurate quantitation of glutathione in cell lysates through surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. Nanomed. Nanotech. Biol. Med. 6(4), 530–537 (2010)CrossRefGoogle Scholar
  20. 20.
    Bisaglia, M., Mammi, S., Bubacco, L.: Kinetic and structural analysis of the early oxidation products of dopamine—analysis of the interactions with α-synuclein. J. Biol. Chem. 282(21), 15597–15605 (2007)CrossRefGoogle Scholar
  21. 21.
    Stathis, E.C., Gatos, H.C.: Determination of gold with ascorbic acid. Ind. Eng. Chem. Anal. Ed. 18(12), 801–801 (1946)CrossRefGoogle Scholar
  22. 22.
    Sau, T.K., Murphy, C.J.: Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution J. Am. Chem. Soc. 126(28), 8648–8649 (2004)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Iva Tomalová
    • 1
  • Chia-Hsin Lee
    • 2
  • Wen-Tsen Chen
    • 2
  • Cheng-Kang Chiang
    • 2
  • Huan-Tsung Chang
    • 2
    Email author
  • Jan Preisler
    • 1
    Email author
  1. 1.CEITEC MU and Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations