Gigantism, taphonomy and palaeoecology of Basiloceras, a new oncocerid genus from the Middle Devonian of the Tafilalt (Morocco)

  • Alexander PohleEmail author
  • Christian Klug
  • Mischa Haas
Regular Research Article


The genus Basiloceras gen. nov. containing the two species B. goliath sp. nov. and B. david sp. nov. is described. It belongs to the Acleistoceratidae within the Oncocerida. Both species are from the Middle Devonian of the Tafilalt (Morocco). The genus exhibits a large interspecific size range between the small Eifelian B. david sp. nov. and the Givetian B. goliath sp. nov., the largest Devonian oncocerid currently known, altogether only second to some fragmentary remains of Calchasiceras from the Carboniferous of Russia. Several other large species are mainly known from the late Emsian of Bohemia and the Eifelian of Germany. The holotype of B. goliath sp. nov. contains numerous epicoles, trace fossils and shell debris, which are discussed in the context of its taphonomy. Compared to other oncocerids, Basiloceras is characterised by a short body chamber, which might be related to buoyancy regulation. In contrast to some older publications, we do not regard breviconic oncocerids with contracted aperture as benthic or nektobenthic animals, but instead, we think that they dwelled in the water column.


Oncocerida Cephalopoda Gigantism Epicoles Taphonomy Buoyancy 



We thank the Swiss National Foundation for financial support (Project Number 200020_132870). We are thankful to the Ministère de l’Energie, des Mines, de l’Eau et de l’Environnement (Direction du Développement Minier, Division du Patrimoine, Rabat, Morocco) for providing working permits. Markus Hebeisen (Zürich, Switzerland) is thanked for advice for the preparation of the holotype of Basiloceras goliath. Said Oukherbouch (Tafraoute, Morocco) collected the large specimen and provided further information about its locality. We are grateful to Adam T. Halamski (Warszawa, Poland) for his help with the identification of the brachiopods and to Olev Vinn (Tartu, Estonia) for comments on the microconchids. Vojtěch Turek (Prague, Czech Republic) is acknowledged for showing us Barrande’s collection. We thank the reviewers David Evans (Peterborough, England), Štepan Manda (Prague, Czech Republic) and Björn Kröger (Helsinki, Finland), whose comments helped to improve the manuscript. Daniel Marty (Basel, Switzerland) is thanked for his editorial work.


  1. Afhüppe, L., Becker, R. T., & Hartenfels, S. (2018). New data on cyrto- and gyroconic nautiloids from the Devonian of the eastern Anti-Atlas. Münstersche Forschungen zur Geologie und Paläontologie, 110, 15–16.Google Scholar
  2. Baird, G. C., Brett, C. E., & Frey, R. C. (1989). “Hitchhiking” epizoans on orthoconic cephalopods: preliminary review of the evidence and its implications. Senckenbergiana Lethaea, 69, 439–465.Google Scholar
  3. Barrande, J. (1865–1877). Système Silurien du centre de la Bohême, 1ère Partie: Recherches Paléontologiques, Volume II, Classe de Mollusques, Ordre des Céphalopodes.—1ère Série, pls. 1–107 (1865); 2me Série, pls. 108–244 (1866); 3me Série, pls. 245–350 (1868); 4me Série, pls. 351–460 (1870); Supplément et Série tardive, pls. 461–544 (1877); Texte I, 712 pp. (1867); Texte II, 266 pp. (1870); Texte III, 804 pp. (1874); Texte IV, 742 pp. (1877); Texte V, 743 pp. (1877); Supplément et Série tardive, Texte, 297 pp. (1877). Prague & Paris: Published privately.Google Scholar
  4. Becker, R. T., El Hassani, A., Aboussalam, Z. S., Hartenfels, S., & Baidder, L. (2018). The Devonian and Lower Carboniferous of the eastern Anti-Atlas: introduction to a “cephalopod paradise”. Münstersche Forschungen zur Geologie und Paläontologie, 110, 145–157.Google Scholar
  5. Brazeau, M. D., & Friedman, M. (2015). The origin and early phylogenetic history of jawed vertebrates. Nature, 420, 490–497.Google Scholar
  6. Brett, C. E., & Walker, S. E. (2002). Predators and predation in Paleozoic marine environments. Paleontological Society Papers, 8, 93–118.Google Scholar
  7. Chlupáč, I. (1983). Stratigraphical position of Barrande’s paleontological localities in the Devonian of Central Bohemia. Časopis pro Mineralalogii a Geologii, 28, 261–275.Google Scholar
  8. Chlupáč, I., Lukeš, P., & Zikmundová, J. (1979). The Lower/Middle Devonian boundary beds in the Barrandian area, Czechoslovakia. Geologica et Palaeontologica, 13, 125–156.Google Scholar
  9. Clarke, M. R., Denton, E. J., & Gilpin-Brown, J. B. (1979). On the use of ammonium for buoyancy in squids. Journal of the Marine Biological Association of the United Kingdom, 59, 259–276.Google Scholar
  10. Collins, D. H. (1969). Devonian nautiloids from northern Canada. Geological Survey of Canada Bulletin, 182, 31–75.Google Scholar
  11. Crick, R. E. (1988). Buoyancy regulation and macroevolution in nautiloid cephalopods. Senckenbergiana Lethaea, 69(1), 13–42.Google Scholar
  12. Crick, R. E., & Teichert, C. (1979). Siphuncular structures in the Devonian nautiloid Archiacoceras from the Eifel of West Germany. Palaeontology, 22, 747–766.Google Scholar
  13. Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., et al. (2011). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. PNAS, 107, 17911–17915.Google Scholar
  14. Davis, R. A., Mapes, R. H., & Klofak, S. (1999). Epizoa on externally shelled cephalopods. In A. Y. Rozanov & A. A. Shevyrev (Eds.), Fossil cephalopods: Recent advances in their study (pp. 32–51). Moscow: Russian Academy of Sciences, Paleontological Institute.Google Scholar
  15. De Baets, K., Klug, C., & Plusquellec, Y. (2010). Zlíchovian faunas with early ammonoids from morocco and their use for the correlation of the eastern Anti-Atlas and the western Dra Valley. Bulletin of Geosciences, 85(2), 317–352.Google Scholar
  16. De Baets, K., & Munnecke, A. (2018). Evidence for Palaeozoic orthoconic cephalopods with bimineralic shells. Palaeontology, 61(2), 173–181.Google Scholar
  17. Denton, E. J., & Gilpin-Brown, J. B. (1966). On the buoyancy of the pearly nautilus. Journal of the Marine Biological Association of the United Kingdom, 46(03), 723.Google Scholar
  18. Dzik, J. (1984). Phylogeny of the Nautiloidea. Palaeontologia Polonica, 45, 1–320.Google Scholar
  19. Flower, R. H. (1938). Devonian brevicones of New York and adjacent areas. Palaeontographica Americana, 2(9), 1–84.Google Scholar
  20. Flower, R. H. (1943). Investigations of actinosiphonate cephalopods. Bulletin of American Paleontology, 28(109), 30–67.Google Scholar
  21. Flower, R. H. (1957). Nautiloids of the Paleozoic. In H. Ladd (Ed.), Treatise of marine ecology and paleoecology (Vol. 67, pp. 829–852). Memoir: Geological Society of America. (2).Google Scholar
  22. Flower, R. H. (1964). Nautiloid shell morphology. New Mexico Institute of Mining and Technology Memoir, 12, 79.Google Scholar
  23. Flower, R. H., & Kummel, B. (1950). A classification of the Nautiloidea. Journal of Paleontology, 24(5), 604–616.Google Scholar
  24. Foerste, A. F. (1926). Actinosiphonate, Trochoceroid and other cephalopods. Denison University Bulletin, Journal of the Scientific Laboratories, 21, 285–383.Google Scholar
  25. Frey, R. C. (1989). Paleoecology of a well-preserved nautiloid assemblage from a Late Ordovician shale unit, Southwestern Ohio. Journal of Paleontology, 63(5), 604–620.Google Scholar
  26. Frey, R. C. (1995). Middle and Upper Ordovician nautiloid cephalopods of the Cincinnati Arch Region of Kentucky, Indiana, and Ohio. Contributions to the Ordovician paleontology of Kentucky and nearby states: U.S. Geological Survey Professional Paper, 1066P, P1–P126.Google Scholar
  27. Frey, L., Naglik, S., Hofmann, S., Schemm-Gregory, S., Frýda, J., Kröger, B., et al. (2014). Diversity and palaeoecology of Early Devonian invertebrate associations in the Tafilalt (Anti-Atlas, Morocco). Bulletin of Geosciences, 89(1), 75–112.Google Scholar
  28. Frye, M. W. (1987). Upper Ordovician (Harjuan) oncoceratid nautiloids from the Boda Limestone, Siljan District. Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 109(1), 83–99.Google Scholar
  29. Furnish, W. M., & Glenister, B. F. (1964). Paleoecology. In R. C. Moore (Ed.), Treatise on invertebrate paleontology, Part K, Mollusca 3, Cephalopoda (pp. K114–K124). Lawrence: Geological Society of America and University of Kansas Press.Google Scholar
  30. Gabbott, S. E. (1999). Orthoconic cephalopods and associated fauna from the Late Ordovician Soom Shale Lagerstatte, South Africa. Palaeontology, 42(1), 123–148.Google Scholar
  31. Gnoli, M., & Serventi, P. (2009). Silurian nautiloid cephalopods from Sardinia: the state of the art. Rendiconti della Società Paleontologica Italiana, 3(1), 109–118.Google Scholar
  32. Halamski, A. T., & Baliński, A. (2013). Middle Devonian brachiopods from the southern Maïder (eastern Anti-Atlas, Morocco). Annales Societatis Geologorum Poloniae, 83, 243–307.Google Scholar
  33. Hautmann, H., Ware, D., & Bucher, H. (2017). Geologically oldest oysters were epizoans on Early Triassic ammonoids. Journal of Molluscan Studies, 83, 253–260.Google Scholar
  34. Hölder, H. (1990). Über die Muschelgattung Placunopsis (Pectinacea, Placunopsidae) in Trias und Jura. Stuttgarter Beiträge zur Naturkunde. Serie B (Geologie und Paläontologie), 165, 1–63.Google Scholar
  35. Holland, C. H. (2007). Cyrtoconic nautiloid cephalopods from the British Silurian. Proceedings of the Geologists’ Association, 118(4), 365–373.Google Scholar
  36. Iba, Y., Sano, S.-I., & Goto, M. (2015). Large belemnites were already common in the Early Jurassic—new evidence from Central Japan. Paleontological Research, 19(1), 21–25.Google Scholar
  37. Klug, C. (2007). Sublethal injuries in Early Devonian cephalopod shells from Morocco. Acta Palaeontologica Polonica, 52(52), 749–759.Google Scholar
  38. Klug, C., De Baets, K., Kröger, B., Bell, M. A., Korn, D., & Payne, J. L. (2015). Normal giants? Temporal and latitudinal shifts of Palaeozoic marine invertebrate gigantism and global change. Lethaia, 48(2), 267–288.Google Scholar
  39. Klug, C., Frey, L., Pohle, A., de Baets, K., & Korn, D. (2017). Palaeozoic evolution of animal mouthparts. Bulletin of Geosciences, 92(4), 511–524.Google Scholar
  40. Klug, C., & Korn, D. (2001). Epizoa and post-mortem epicoles on cephalopod shells–Devonian and Carboniferous examples from Morocco. Berliner geowissenschaftliche Abhandlungen, 36, 145–155.Google Scholar
  41. Klug, C., Korn, D., Richter, U., & Urlichs, M. (2004). The black layer in cephalopods from the German Muschelkalk (Middle Triassic). Palaeontology, 47, 1407–1425.Google Scholar
  42. Klug, C., Kröger, B., Kiessling, W., Mullins, G. L., Servais, T., Frýda, J., et al. (2010). The Devonian nekton revolution. Lethaia, 43(4), 465–477.Google Scholar
  43. Klug, C., Kröger, B., Korn, D., Martin, R., Schemm-Gregory, M., De Baets, K., et al. (2008). Ecological change during the early Emsian (Devonian) in the Tafilalt (Morocco), the origin of the Ammonoidea, and the first African pyrgocystid edrioasteroids, machaerids and phyllocarids. Palaeontographica Abteilung A, 283(4–6), 83–176.Google Scholar
  44. Klug, C., & Lehmkuhl, A. (2004). Soft-tissue attachment and taphonomy of the Middle Triassic nautiloid Germanonautilus. Acta Palaeontologica Polonica, 49, 243–258.Google Scholar
  45. Klug, C., & Pohle, A. (2018). The eastern Amessoui Syncline—a hotspot for Silurian to Carboniferous cephalopod research. Münstersche Forschungen zur Geologie und Paläontologie, 110, 244–260.Google Scholar
  46. Kröger, B. (2003). The size of the siphuncle in cephalopod evolution. Senckenbergiana Lethaea, 83, 39–52.Google Scholar
  47. Kröger, B. (2008). Nautiloids before and during the origin of ammonoids in a Siluro-Devonian section in the Tafilalt, Anti-Atlas, Morocco. Special Papers in Palaeontology, 79, 1–110.Google Scholar
  48. Kröger, B., & Aubrechtová, M. (2018). Cephalopods from reef limestone of the Vasalemma Formation, northern Estonia (latest Sandbian, Upper Ordovician) and the establishment of a local warm-water fauna. Journal of Systematic Palaeontology, 16(10), 799–839.Google Scholar
  49. Kröger, B., Klug, C., & Mapes, R. H. (2005). Soft-tissue attachments in orthocerid and bactritid cephalopods from the Early and Middle Devonian of Germany and Morocco. Acta Palaeontologica Polonica, 50(2), 329–342.Google Scholar
  50. Kröger, B., Servais, T., & Zhang, Y. (2009). The origin and initial rise of pelagic cephalopods in the Ordovician. PLoS One, 4(9), e7262.Google Scholar
  51. Kubodera, T., & Mori, K. (2005). First-ever observations of a live giant squid in the wild. Proceedings of the Royal Society B: Biological Sciences, 272(1581), 2583–2586.Google Scholar
  52. Landman, N. H., Saunders, W. B., Winston, J. E., & Harries, P. J. (2010). Incidence and kinds of epizoans on the shells of live Nautilus. In W. B. Saunders & N. H. Landman (Eds.), Nautilus—the biology and palaeobiology of a living fossil (pp. 163–177). Dordrecht: Springer.Google Scholar
  53. Landois, H. (1895). Die Riesenammoniten von Seppenrade, Pachydiscus Zittel seppenradensis H. Landois. Jahresbericht der Zoologischen Sektion des Westfälischen Provinzial- Vereins für Wissenschaft und Kunst, 23, 99–108.Google Scholar
  54. Lemanis, R., Zachow, S., Fusseis, F., & Hoffmann, R. (2014). A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells. Paleobiology, 41, 313–329.Google Scholar
  55. Manda, Š. (2008). Palaeoecology and palaeogeographic relations of the Silurian phragmoceratids (Nautiloidea, Cephalopoda) of the Prague Basin (Bohemia). Bulletin of Geosciences, 83(1), 39–62.Google Scholar
  56. Manda, Š., & Frýda, J. (2010). Silurian-Devonian boundary events and their influence on cephalopod evolution: Evolutionary significance of cephalopod egg size during mass extinctions. Bulletin of Geosciences, 85(3), 513–540.Google Scholar
  57. Manda, Š., & Turek, V. (2011). Late Emsian Rutoceratoidea (Nautiloidea) from the Prague Basin, Czech Republic: Morphology, diversity and palaeoecology. Palaeontology, 54(5), 999–1024.Google Scholar
  58. Manger, W. L., Meeks, L. K., & Stephen, D. A. (1999). Pathologic gigantism in Middle Carboniferous cephalopods, southern midcontinent, United States. In F. Olóriz & F. J. Rodríguez-Tovar (Eds.), Advancing research on living and fossil cephalopods (pp. 77–89). Boston: Springer.Google Scholar
  59. Mutvei, H. (2011). Silurian oncocerid Octamerella (Cephalopoda) from Gotland, Sweden. Gff, 133(3–4), 125–133.Google Scholar
  60. Mutvei, H. (2013). Characterization of nautiloid orders Ellesmerocerida, Oncocerida, Tarphycerida, Discosorida and Ascocerida: New superorder Multiceratoidea. Gff, 135(2), 171–183.Google Scholar
  61. Naglik, C., Rikhtegar, F., & Klug, C. (2016). Buoyancy of some Palaeozoic ammonoids and their hydrostatic properties based on empirical 3D-models. Lethaia, 49(1), 3–12.Google Scholar
  62. Niko, S., & Nishida, T. (2003). Devonohelicoceras hidaense, a new torticonic oncocerid (Cephalopoda) from the Lower Devonian of Central Japan. In Proceedings of the Japan Academy, Series B.Google Scholar
  63. Pohle, A., & Klug, C. (2018a). Body size of orthoconic cephalopods from the late Silurian and Devonian of the Anti-Atlas (Morocco). Lethaia, 51(1), 126–148.Google Scholar
  64. Pohle, A., & Klug, C. (2018b). Early and Middle Devonian Cephalopods from Hamar Laghdad (Tafilalt, Morocco) and remarks on epicoles and cameral deposits. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 290(1–3), 203–240.Google Scholar
  65. Pruss, S. B., Payne, J. L., & Bottjer, D. J. (2007). Placunopsis bioherms: The first metazoan buildups following the end-Permian mass extinction. Palaios, 22, 17–23.Google Scholar
  66. Rakociński, M. (2011). Sclerobionts on upper Famennian cephalopods from the Holy Cross Mountains, Poland. Palaeobiodiversity and Palaeoenvironments, 91, 63–73.Google Scholar
  67. Rosa, R., Lopes, V. M., Guerreiro, M., Bolstad, K., & Xavier, J. C. (2017). Biology and ecology of the world’s largest invertebrate, the colossal squid (Mesonychoteuthis hamiltoni): A short review. Polar Biology, 40(9), 1871–1883.Google Scholar
  68. Seilacher, A. (1982). Ammonite shells as habitats in the Posidonia Shale—floats or benthic islands? Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1982, 98–114.Google Scholar
  69. Shimansky, V. N. (1957). Carboniferous Oncoceratida. Doklady Akademii Nauk SSSR, 112(3), 530–532. (in Russian).Google Scholar
  70. Shimansky, V. N. (1968). Carboniferous Orthoceratida, Oncoceratida, Actinoceratida and Bactritida. Akademiya Nauk SSSR, Trudy Paleontologicheskogo Instituta, 117, 1–148. (in Russian).Google Scholar
  71. Stevens, G. R. (1988). Giant ammonites: A review. In J. Wiedemann & J. Kullmann (Eds.), Cephalopods present and past—O. H. Schindewolf-Symposium Tübingen 1985 (2nd International Cephalopod Symposium) (pp. 141–166). Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  72. Stridsberg, S. (1985). Silurian oncocerid cephalopods from Gotland. Fossils and Strata, 18, 1–65.Google Scholar
  73. Stridsberg, S. (1990a). Orientation of cephalopod shells in illustrations. Palaeontology, 33(1), 243–248.Google Scholar
  74. Stridsberg, S. (1990b). Internal shell destruction in some Silurian nautiloids. Paläontologische Zeitschrift, 64(3), 213–220.Google Scholar
  75. Sweet, W. C. (1959). Muscle-attachment impressions in some Paleozoic nautiloid cephalopods. Journal of Paleontology, 33(2), 293–304.Google Scholar
  76. Sweet, W. C. (1964). Nautiloidea-Oncocerida. In R. C. Moore (Ed.), Treatise on invertebrate paleontology, Part K, Mollusca 3, Cephalopoda (pp. K277–K320). Lawrence: Geological Society of America and University of Kansas Press.Google Scholar
  77. Tajika, A., Naglik, C., Morimoto, N., Pascual-Cebrian, E., Hennhöfer, D. K., & Klug, C. (2015). Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites, its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical Biology, 27, 181–191.Google Scholar
  78. Taylor, P. D., & Vinn, O. (2006). Convergent morphology in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications. Journal of the Geological Society, London, 163, 225–228.Google Scholar
  79. Teichert, C. (1964). Morphology of Hard Parts. In R. C. Moore (Ed.), Treatise on invertebrate paleontology, Part K, Mollusca 3, Cephalopoda (pp. K13–K54). Lawrence: Geological Society of America and University of Kansas Press.Google Scholar
  80. Teichert, C. (1967). Major features of cephalopod evolution. In C. Teichert & E. L. Yochelson (Eds.), Essays in paleontology and stratigraphy: R.C. Moore commemorative volume (pp. 162–210). Lawrence: University of Kansas Press.Google Scholar
  81. Teichert, C., & Kummel, B. (1960). Size of endoceroid cephalopods. Breviora, Museum of Comparative Zoology, 128, 1–7.Google Scholar
  82. Termier, G., & Termier, H. (1950). Paléontologie marocaine, II: invertébrés de l’ère primaire. Fascicule III, Mollusques. Notes et Mémoires du Service Carte Géologique du Maroc, 78, 1–246.Google Scholar
  83. Todd, J.A., & Hagdorn, H. (1993). First record of Muschelkalk Bryozoa: The earliest ctenostome body fossils. In H. Hagdorn, and A. Seilacher (Eds.) Muschelkalk. Schöntaler Symposium 1991. Sonderbände der Gesellschaft für Naturkunde in Württemberg, 2, 285, 286. Goldschneck, Stuttgart − Korb.Google Scholar
  84. Vinn, O. (2006). Two new microconchid (Tentaculita BOUCEK, 1964) genera from the Early Palaeozoic of Baltoscandia and England. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 2006(2), 89–100.Google Scholar
  85. Wani, R. (2007). How to recognize in situ fossil cephalopods: Evidence from experiments with modern Nautilus. Lethaia, 40, 305–311.Google Scholar
  86. Ward, P. (1986). Rates and processes of compensatory buoyancy change in Nautilus macromphalus. The Veliger, 28(4), 356–368.Google Scholar
  87. Watkins, R. (1981). Epizoan ecology in the type Ludlow series (Upper Silurian). England. Journal of Paleontology, 55(1), 29–32.Google Scholar
  88. Weedon, M. J. (1991). Microstructure and affinity of the enigmatic Devonian tubular fossil Trypanopora. Lethaia, 24(2), 227–234.Google Scholar
  89. Westermann, G. E. G. (1973). Strength of concave septa and depth limits of fossil cephalopods. Lethaia, 6(4), 383–403.Google Scholar
  90. Westermann, G. E. G. (1975). Architecture and buoyancy of simple cephalopod phragmocones and remarks on ammonites. Paläontologische Zeitschrift, 49(3), 221–234.Google Scholar
  91. Westermann, G. E. G. (1985). Post-mortem descent with septal implosion in Silurian nautiloids. Paläontologische Zeitschrift, 59(1), 79–97.Google Scholar
  92. Wyse Jackson, P. N., & Key, M. M., Jr. (2014). Epizoic bryozoans on cephalopods through the Phanerozoic: A review. Studi Trentini di Scienze Naturali, 94, 283–291.Google Scholar
  93. Zatoń, M., & Krawczyński, W. (2011). New Devonian microconchids (Tentaculita) from the Holy Cross Mountains. Poland. Journal of Paleontology, 85(4), 757–769.Google Scholar
  94. Zatoń, M., & Olempska, E. (2017). A family-level classification of the Order Microconchida (Class Tentaculita) and the description of two new microconchid genera. Historical Biology, 29(7), 885–894.Google Scholar
  95. Zhuravleva, F. A. (1962). Order Oncoceratida. In W. E. Ruzhencev (Ed.), Osnovy paleontologii. Mollyuski-golovonogie (pp. 101–115). Moscow: Izdatelstvo Akademiya Nauk SSSR. (in Russian).Google Scholar
  96. Zhuravleva, F. A. (1972). Devonian nautiloids. Order Discosorida. Trudy Paleontologicheskogo Instituta Academiya Nauk SSSR, 134, 1–320. (in Russian).Google Scholar
  97. Zhuravleva, F. A. (1974). Devonian nautiloids. Orders Oncoceratida, Tarphyceratida, Nautilida. Trudy Paleontologicheskogo Instituta Academiya Nauk SSSR, 142, 1–159. (in Russian).Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2019

Authors and Affiliations

  1. 1.Paläontologisches Institut und Museum, Universität ZürichZurichSwitzerland
  2. 2.Department of Earth SciencesETH ZürichZurichSwitzerland
  3. 3.Department of Surface Waters Research and ManagementEawagDübendorfSwitzerland

Personalised recommendations