Advertisement

Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an overview

  • Andrea VillaEmail author
  • Massimo Delfino
Regular Research Article

Abstract

Lizards were and still are an important component of the European herpetofauna. The modern European lizard fauna started to set up in the Miocene and a rich fossil record is known from Neogene and Quaternary sites. At least 12 lizard and worm lizard families are represented in the European fossil record of the last 23 Ma. The record comprises more than 3000 occurrences from more than 800 localities, mainly of Miocene and Pleistocene age. By the beginning of the Neogene, a marked faunistic change is detectable compared to the lizard fossil record of Palaeogene Europe. This change is reflected by other squamates as well and might be related to an environmental deterioration occurring roughly at the Oligocene/Miocene boundary. Nevertheless, the diversity was still rather high in the Neogene and started to decrease with the onset of the Quaternary glacial cycles. This led to the current impoverished lizard fauna, with the southward range shrinking of the most thermophilic taxa (e.g., agamids, amphisbaenians) and the local disappearance of other groups (e.g., varanids). Our overview of the known fossil record of European Neogene and Quaternary lizards and worm lizards highlighted a substantial number of either unpublished or poorly known occurrences often referred to wastebasket taxa. A proper study of these and other remains, as well as a better sampling of poorly explored time ranges (e.g., Pliocene, Holocene), is needed and would be of utmost importance to better understand the evolutionary history of these reptiles in Europe.

Keywords

“Lacertilia” Amphisbaenia fossil record Cenozoic 

Notes

Acknowledgements

This overview was part of the Ph.D. thesis of one of us (A.V.) at the University of Torino. It greatly benefited from discussions with Aaron Bauer (Villanova University), Arnau Bolet (University of Bristol), Georgios Georgalis (University of Fribourg), Emanuel Tschopp (American Museum of Natural History, New York City) and Davit Vasilyan (JURASSICA Museum, Porrentruy). Two reviewers, Krister Smith (Senckenberg Research Institute, Frankfurt am Main) and Andrej Čerňanský (Comenius University, Bratislava), are thanked for useful comments on a previous version of this article. We would also like to thank the editor Daniel Marty. A.V. thanks Daniele Arobba, Andrea De Pascale and all the staff at Museo Archeologico del Finale (Finale Ligure) for their assistance while studying Ligurian fossil lizards, including the strange Hemidactylus from Valdemino. Oliver Rauhut (Bayerische Staatssammlung für Paläontologie und Geologie, Munich), Caterinella Tuveri (Soprintendenza Archeologia, Belle Arti e Paesaggio per le prov. di Sassari e Nuoro, Nuoro), Alexander Kupfer and Erin Maxwell (Staatliches Museum für Naturkunde, Stuttgart) kindly gave access to the collections under their care and helped while studying them. Visits to the Bayerische Staatssammlung für Paläontologie und Geologie (Munich) were supported by an EAVP Research Grant from the European Association of Vertebrate Palaeontologists to A.V. Arnau Bolet and David M. Alba (Institut Català de Paleontologia Miquel Crusafont, Sabadell) kindly allowed us to use their photos and the 3D model of B. mendezi in this paper, whereas Hugues-Alexandre Blain (Institut Català de Paleoecologia Humana i Evolució Social, Tarragona) gave us permission to figure his drawings of the Iberian Chalcides dentary represented in Fig. 8a–b. Project supported by Fondi di Ateneo (2016–2017), Generalitat de Catalunya (2014 SGR 416 GRC and CERCA Program), and Spanish Ministerio de Economía y Competitividad (CGL2016-76431-P). We would also like to acknowledge the Google Books team for having digitalized some classic palaeontological books, difficult to be accessed otherwise.

Supplementary material

13358_2018_172_MOESM1_ESM.xlsx (152 kb)
Supplementary material 1 (XLSX 152 kb)
13358_2018_172_MOESM2_ESM.xlsx (22 kb)
Supplementary material 2 (XLSX 22 kb)
13358_2018_172_MOESM3_ESM.xlsx (10 kb)
Supplementary material 3 (XLSX 10 kb)
13358_2018_172_MOESM4_ESM.docx (98 kb)
Supplementary material 4 (DOCX 97 kb)

References

  1. Abbazzi, L., Angelone, C., Arca, M., Barisone, G., Bedetti, C., Delfino, M., et al. (2004). Plio-Pleistocene fossil vertebrates of Monte Tuttavista (Orosei, Eastern Sardinia, Italy), an overview. Rivista Italiana di Paleontologia e Stratigrafia, 110, 681–706.Google Scholar
  2. Abdul Aziz, H., Böhme, M., Rocholl, A., Zwing, A., Prieto, L., Wijbrans, J. R., et al. (2008). Integrated stratigraphy and 40Ar/39Ar chronology of the early to middle Miocene Upper Freshwater Molasse in eastern Bavaria (Germany). International Journal of Earth Sciences, 97, 115–134.CrossRefGoogle Scholar
  3. Adams, A. L. (1866). On fossil chelonians from the ossiferous caves and fissures of Malta. Quarterly Journal of the Geological Society, 22, 594–595.CrossRefGoogle Scholar
  4. Agustí, J., Blain, H.-A., Cuenca-Bescòs, G., & Bailon, S. (2009). Climate forcing of first hominid dispersal in Western Europe. Journal of Human Evolution, 57, 815–821.CrossRefGoogle Scholar
  5. Albert, E. M., & Fernández, A. (2009). Evidence of cryptic speciation in a fossorial reptile: description of a new species of Blanus (Squamata: Amphisbaenia: Blanidae) from the Iberian Peninsula. Zootaxa, 2234, 56–68.Google Scholar
  6. Alexejew, A. (1912). Description de la faune méotique des vertébrés des environ du village Petroviérovak (District Tiraspol). I. Anguidae. Zapiski matematicheskogo otdeleniya Novorossiiskogo obshchestva estestvoispytatelei, 39, 13–40.Google Scholar
  7. Arnold, N., & Ovenden, D. (2002). A field guide to the reptiles and amphibians of Britain and Europe. London: Harper-Collins Publisher.Google Scholar
  8. Augé, M. (1993). Une nouvelle espèce de Lacertidé (Reptilia, Lacertilia) des Faluns Miocènes de l’Anjou-Touraine. Bulletin de la Société de Sciences naturelles de l’Ouest de la France, 15, 69–74.Google Scholar
  9. Augé, M. (2003). La faune de Lacertilia (Reptilia, Squamata) de l’Éocène inférieur de Prémontré (Bassin de Paris, France). Geodiversitas, 25, 539–574.Google Scholar
  10. Augé, M. (2005). Évolution des lézards du Paléogène en Europe. Mémoires du Muséum national d’Histoire naturelle, 192, 1–369.Google Scholar
  11. Augé, M. (2012). Amphisbaenians from the European Eocene: a biogeographical review. Palaeobiodiversity and Palaeoenvironments, 92, 425–443.CrossRefGoogle Scholar
  12. Augé, M., Bailon, S., & Malfay, J. P. (2003). Un nouveau genre de lacertidae (Reptilia, Lacertilia) dans les faluns miocènes de l’Anjou-Touraine (Maine-et-Loire, France). Geodiversitas, 25, 289–295.Google Scholar
  13. Augé, M., & Pouit, D. (2012). Presence of iguanid lizards in the European Oligocene. Lazarus taxa and fossil abundance. Bulletin de la Société Géologique de France, 183, 653–660.CrossRefGoogle Scholar
  14. Augé, M., & Rage, J.-C. (2000). Les squamates (Reptilia) du Miocène moyen de Sansan. In L. Ginsburg (Ed.), La faune miocène de Sansan et son environnement. Mémoires du Muséum national d’Histoire naturelle, 183, 263–313.Google Scholar
  15. Augé, M., & Smith, R. (2009). An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene-Oligocene transition. Zoological Journal of the Linnean Society, 155, 148–170.CrossRefGoogle Scholar
  16. Augé, M., & Sullivan, R. M. (2006). A new genus, Paraplacosauriops (Squamata, Anguidae, Glyptosaurinae), from the Eocene of France. Journal of Vertebrate Paleontology, 26, 133–137.CrossRefGoogle Scholar
  17. Bailon, S. (1991). Amphibiens et reptiles du Pliocène et du Quaternaire de France et d’Espagne: mise en place et evolution des faunes. Paris: Université Paris VII.Google Scholar
  18. Bailon, S. (2004). Fossil record of Lacertidae in Mediterranean islands: the state of the art. In V. Pérez-Mellado, N. Riera, & A. Perera (Eds.), The biology of lacertid lizards. Evolutionary and ecological perspectives. Institut Menorquí d’Estudis, Recerca, 8, 37–62.Google Scholar
  19. Bailon, S., & Augé, M. (2012). Un nouveau genre, Ragesaurus (Squamata, Anguidae, Anguinae), du Pléistocène inférieur des îles Medas (Catalogne, Espagne). Bulletin de la Societe Geologique de France, 183, 683–688.CrossRefGoogle Scholar
  20. Bailon, S., & Blain, H.-A. (2007). Faunes de reptiles et changements climatiques en Europe occidentale autour de la limite Plio-Pléistocène. Quaternaire, 18, 55–63.CrossRefGoogle Scholar
  21. Bailon, S., Boistel, R., Bover, P., & Alcover, J. A. (2014). Maioricalacerta rafelinensis, gen. et sp. nov., (Squamata, Lacertidae), from the early Pliocene of Mallorca (Balearic Islands, Western Mediterranean Sea). Journal of Vertebrate Paleontology, 34, 318–326.CrossRefGoogle Scholar
  22. Barahona, F., & Barbadillo, L. J. (1997). Identification of some Iberian lacertids using skull characters. Revista Española de Herpetología, 11, 47–62.Google Scholar
  23. Barbadillo, L. J., García-París, M., & Sanchiz, B. (1997). Orígenes y relaciones evolutivas de la herpetofauna ibérica. In J. M. Pleguezuelos (Ed.), Distribución y biogeografía de los anfibios y reptiles en España y Portugal. Monografías de Herpetología, 3, 47–100.Google Scholar
  24. Bell, C. J., Gauthier, J. A., & Bever, G. S. (2010). Covert biases, circularity, and apomorphies: a critical look at the North American Quaternary Herpetofaunal Stability Hypothesis. Quaternary International, 217, 30–36.CrossRefGoogle Scholar
  25. Blain, H.-A. (2005). Contribution de la paleoherpetofaune (Amphibia & Squamata) a la connaissance de l’evolution du climat et du paysage du Pliocene superieur au Pleistocene Moyen d’Espagne. Paris: Muséum national d’Histoire naturelle.Google Scholar
  26. Blain, H.-A. (2009). Contribution de la paléoherpétofaune (Amphibia & Squamata) à la connaissance de l’évolution du climat et du paysage du Pliocène supérieur au Pléistocène moyen d’Espagne. Treballs del Museu de Geologia de Barcelona, 16, 39–170.Google Scholar
  27. Blain, H.-A. (2015). Anfibios y escamosos de Cueva Victoria. - Amphibians and squamate reptiles from Cueva Victoria. Mastia, 11-12-13, 175–197.Google Scholar
  28. Blain, H.-A., Agustí, J., Lordkipanidze, D., Rook, L., & Delfino, M. (2014a). Paleoclimatic and paleoenvironmental context of the Early Pleistocene hominins from Dmanisi (Georgia, Lesser Caucasus) inferred from the herpetofaunal assemblage. Quaternary Science Reviews, 105, 136–150.CrossRefGoogle Scholar
  29. Blain, H.-A., & Bailon, S. (2010). Anfibios y escamosos del Pleistoceno inferior de Barranco León y de Fuente Nueva 3 (Orce, Andalucía, España). In I. Toro, B. Martínez-Navarro, & J. Agustí (Eds.), Ocupaciones humanas en el Pleistoceno inferior y medio de la Cuenca de Guadix-Baza (pp. 165–183). Sevilla: Consejería de Cultura.Google Scholar
  30. Blain, H.-A., Bailon, S., & Agustí, J. (2007). Anurans and squamate reptiles from the latest early Pleistocene of Almenara-Casablanca-3 (Castellón, East of Spain). Systematic, climatic and environmental considerations. Geodiversitas, 29, 269–295.Google Scholar
  31. Blain, H.-A., Bailon, S., & Agustí, J. (2008). Amphibians and squamate reptiles from the latest Early Pleistocene of Cueva Victoria (Murcia, southeastern Spain, SW Mediterranean): paleobiogeographic and paleoclimatic implications. Geologica Acta, 6, 345–361.Google Scholar
  32. Blain, H.-A., Bailon, S., & Agustí, J. (2016). The geographical and chronological pattern of herpetofaunal Pleistocene extinctions on the Iberian Peninsula. Comptes Rendus Palevol, 15, 761–764.CrossRefGoogle Scholar
  33. Blain, H.-A., Bailon, S., Cuenca-Bescós, G., Arsuaga, J. L., Bermúdez De Castro, J. M., & Carbonell, E. (2009). Long-term climate record inferred from early-middle Pleistocene amphibian and squamate reptile assemblages at the Gran Dolina Cave. Atapuerca. Spain. Journal of Human Evolution, 56, 55–65.CrossRefGoogle Scholar
  34. Blain, H.-A., Gleed-Owen, C. P., López-García, J. M., Carrión, J. S., Jennings, R., Finlayson, G., et al. (2013). Climatic conditions for the last Neanderthals: herpetofaunal record of Gorham’s cave. Gibraltar. Journal of Human Evolution, 64, 289–299.CrossRefGoogle Scholar
  35. Blain, H.-A., Lozano-Fernández, I., Ollé, A., Rodríguez, J., Santonja, M., & Pérez-González, A. (2015). The continental record of Marine Isotope Stage 11 (Middle Pleistocene) on the Iberian Peninsula characterized by herpetofaunal assemblages. Journal of Quaternary Science, 30, 667–678.CrossRefGoogle Scholar
  36. Blain, H.-A., Panera, J., Uribelarrea, D., Rubio-Jara, S., & Pérez-González, A. (2012). Characterization of a rapid climate shift at the MIS 8/7 transition in central Spain (Valdocarros II, Autonomous Region of Madrid) by means of the herpetological assemblages. Quaternary Science Reviews, 47, 73–81.CrossRefGoogle Scholar
  37. Blain, H.-A., Santonja, M., Pérez-González, A., Panera, J., & Rubio-Jara, S. (2014b). Climate and environments during Marine Isotope Stage 11 in the central Iberian Peninsula: the herpetofaunal assemblage from the Acheulean site of Áridos-1, Madrid. Quaternary Science Reviews, 94, 7–21.CrossRefGoogle Scholar
  38. Bloos, G., Böttcher, R., Heinrich, W.-D., & Münzing, K. (1991). Ein Vorkommen von Kleinvertebraten in jung-Pleistozänen Deckschichten (Wende Eem/Würm) bei Steinheim an der Murr. Suttgarter Beiträge zur Naturkunde. Serie B (Geologie und Paläontologie), 179, 1–72.Google Scholar
  39. Boettger, O. (1875). Über die Gliederung der Cyrenenmergel-Gruppe im Mainzer Becken. Bericht über die Senckenbergische Naturforschende Geselschaft, 1873–1874, 50–102.Google Scholar
  40. Boettger, O. (1876/1877). Die Fauna der Corbicula-Schichten im Mainzer Becken. Palaeontographica, 24, 185–219.Google Scholar
  41. Böhme, M. (1999a). Die Miozäne Fossil-Lagerstätte Sandelzhausen. 16. Fisch-und Herpetofauna - Erste Ergebnisse. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 214, 487–496.CrossRefGoogle Scholar
  42. Böhme, M. (1999b). Doppelschleichen (Sauria, Amphisbaenidae) aus dem Untermiozän von Stubersheim 3 (Süddeutschland). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, 39, 85–90.Google Scholar
  43. Böhme, M. (2002). Lower vertebrates (Teleostei, Amphibia, Sauria) from the Karpatian of the Korneuburg Basin - palaeoecological, environmental and palaeoclimatical implications. Beiträge zur Paläontologie, 27, 339–353.Google Scholar
  44. Böhme, M. (2003). The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 389–401.CrossRefGoogle Scholar
  45. Böhme, M. (2010). Ectothermic vertebrates (Actinopterygii, Allocaudata, Urodela, Anura, Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria) and their implications for environment reconstruction and palaeoclimate. Paläontologische Zeitschrift, 84, 3–41.CrossRefGoogle Scholar
  46. Böhme, M., & Ilg, A. (2003). fosFARbase www.wahre-staerke.com/Accessed in 2017.Google Scholar
  47. Böhme, M., & Vasilyan, D. (2014). Ectotermic vertebrates from the late middle Miocene of Gratkorn (Austria, Styria). Palaeobiodiversity and Palaeoenvironments, 94, 21–40.CrossRefGoogle Scholar
  48. Böhme, W., & Zammit-Maempel, G. (1982). Lacerta siculimelitensis sp. n. (Sauria: Lacertidae), a giant lizard from the Late Pleistocene of Malta. Amphibia-Reptilia, 3, 257–268.CrossRefGoogle Scholar
  49. Bolet, A. (2017). First early Eocene lizards from Spain and a study of the compositional changes between late Mesozoic and early Cenozoic Iberian lizard assemblages. Palaeontologia Electronica, 20.2.20A, 1–22.Google Scholar
  50. Bolet, A., Daza, J. D., Augé, M., & Bauer, A. M. (2015). New genus and species names for the Eocene lizard Cadurcogekko rugosus Augé, 2005. Zootaxa, 3985, 265–274.CrossRefGoogle Scholar
  51. Bolet, A., Delfino, M., Fortuny, J., Almécija, S., Robles, J. M., & Alba, D. M. (2014). An amphisbaenian skull from the European Miocene and the evolution of Mediterranean worm Lizards. PLoS ONE, 9, e98082.CrossRefGoogle Scholar
  52. Bolet, A., & Evans, S. E. (2013a). Fossil history of chamaeleons. In K. A. Tolley & A. Herrel (Eds.), The biology of chamaeleons (pp. 175–192). Berkeley: University of California Press.Google Scholar
  53. Bolet, A., & Evans, S. E. (2013b). Lizards and amphisbaenians (Reptilia, Squamata) from the late Eocene of Sossís (Catalonia, Spain). Palaeontologia Electronica, 16.1.8A, 1–23.Google Scholar
  54. Bolkay, S. J. (1913). Additions to the fossil herpetology of Hungary from the Pannonian and Praeglacial periode. Jahrbuche der Ungarischen geologischen Reichsanstalt, 21, 217–230.Google Scholar
  55. Bonfiglio, L., & Insacco, G. (1992). Palaeoenvironmental, paleontologic and stratigraphic significance of vertebrate remains in Pleistocene limnic and alluvial deposits from Southeastern Sicily. Palaeogeography, Palaeoclimatology, Palaeoecology, 95, 195–208.CrossRefGoogle Scholar
  56. Bonfiglio, L., Marra, A. C., Masini, F., Pavia, M., & Petruso, D. (2002). Pleistocene faunas of Sicily: a review. In W. H. Waldren, & J. A. Ensenyat (Eds.), World islands in prehistory: international insular investigations. British Archaeological Reports, International Series, 1095, 428–436.Google Scholar
  57. Brunner, G. (1954). Das Fuchsloch bei Siegmannsbrunn (Oberfr.) (Eine mediterrane Riss-Wiirm-Fauna). Neues Jahrbuch für Geologie und Palaontologie, 100, 83–118.Google Scholar
  58. Caldwell, M. W., Nydam, R. L., Palci, A., & Apesteguía, S. (2015). The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution. Nature Communications, 6, 5996.CrossRefGoogle Scholar
  59. Caloi, L., Kotsakis, T., & Palombo, M. R. (1986). La fauna a vertebrati terrestri del Pleistocene delle isole del Mediterraneo. Geologica Romana, 25, 235–256.Google Scholar
  60. Carranza, S., & Arnold, E. N. (2006). Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 38, 531–545.CrossRefGoogle Scholar
  61. Ceríaco, L. M. P., & Bauer, A. M. (2018). An integrative approach to the nomenclature and taxonomic status of the genus Blanus Wagler, 1830 (Squamata: Blanidae) from the Iberian Peninsula. Journal of Natural History, 52, 849–880.CrossRefGoogle Scholar
  62. Čerňanský, A. (2010a). A revision of chamaeleonids from the lower Miocene of the Czech Republic with description of a new species of Chamaeleo (Squamata, Chamaeleonidae). Geobios, 43, 605–613.CrossRefGoogle Scholar
  63. Čerňanský, A. (2010b). Earliest world record of green lizards (Lacertilia, Lacertidae) from the Lower Miocene of Central Europe. Biologia, 65, 737–741.CrossRefGoogle Scholar
  64. Čerňanský, A. (2011). A revision of the chameleon species Chamaeleo pfeili Schleich (Squamata; Chamaeleonidae) with description of a new material of chamaeleonids from the Miocene deposits of southern Germany. Bulletin of Geosciences, 86, 275–282.CrossRefGoogle Scholar
  65. Čerňanský, A. (2012). The oldest known European Neogene girdled lizard fauna (Squamata, Cordylidae), with comments on early Miocene immigration of African taxa. Geodiversitas, 34, 837–848.CrossRefGoogle Scholar
  66. Čerňanský, A. (2016). Another piece of the puzzle: the first report on the Early Miocene lizard fauna from Austria (Ottnangian, MN 4; Oberdorf locality). Paläontologische Zeitschrift, 90, 723–746.CrossRefGoogle Scholar
  67. Čerňanský, A., & Bauer, A. M. (2010). Euleptes gallica Müller (Squamata: Gekkota: Sphaerodactylidae) from the Lower Miocene of North-West Bohemia, Czech Republic. Folia Zoologica, 59, 323–328.CrossRefGoogle Scholar
  68. Čerňanský, A., Bolet, A., Müller, J., Rage, J.-C., Augé, M., & Herrel, A. (2017a). A new exceptionally preserved specimen of Dracaenosaurus (Squamata, Lacertidae) from the Oligocene of France as revealed by micro-computed tomography. Journal of Vertebrate Paleontology, 37, e1384738.CrossRefGoogle Scholar
  69. Čerňanský, A., Daza, J. D., & Bauer, A. M. (2018). Geckos from the middle Miocene of Devínska Nová Ves (Slovakia): new material and a review of the previous record. Swiss Journal of Geosciences, 111, 183–190.CrossRefGoogle Scholar
  70. Čerňanský, A., Klembara, J., & Müller, J. (2016a). The new rare record of the late Oligocene lizards and amphisbaenians from Germany and its impact on our knowledge of the European terminal Palaeogene. Palaeobiodiversity and Palaeoenvironments, 96, 559–587.CrossRefGoogle Scholar
  71. Čerňanský, A., Klembara, J., & Smith, K. T. (2016b). Fossil lizard from central Europe resolves the origin of large body size and herbivory in giant Canary Island lacertids. Zoological Journal of the Linnean Society, 176, 861–877.CrossRefGoogle Scholar
  72. Čerňanský, A., Rage, J.-C., & Klembara, J. (2015). The Early Miocene squamates of Amöneburg (Germany): the first stages of modern squamates in Europe. Journal of Systematic Palaeontology, 13, 97–128.CrossRefGoogle Scholar
  73. Čerňanský, A., & Smith, K. T. (2018). Eolacertidae: a new extinct clade of lizards from the Palaeogene; with comments on the origin of the dominant European reptile group – Lacertidae. Historical Biology, 30, 994–1014.CrossRefGoogle Scholar
  74. Čerňanský, A., Szyndlar, Z., & Mörs, T. (2017b). Fossil squamate faunas from the Neogene of Hambach (northwestern Germany). Palaeobiodiversity and Palaeoenvironments, 97, 329–354.CrossRefGoogle Scholar
  75. Čerňanský, A., & Venczel, M. (2011). An amphisbaenid reptile (Squamata, Amphisbaenidae) from the lower Miocene of Northwest Bohemia (MN 3, Czech Republic). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 260, 73–77.CrossRefGoogle Scholar
  76. Cirilli, O., Benvenuti, M. G., Carnevale, G., Casanovas Vilar, I., Delfino, M., Furió, M., et al. (2016). Fosso della Fittaia: the oldest Tusco-Sardinian late Miocene endemic vertebrate assemblages (Baccinello-Cinigiano Basin, Tuscany, Italy). Rivista Italiana di Paleontologia e Stratigrafia, 122, 13–34.Google Scholar
  77. Colombero, S., Alba, D. M., D’amico, C., Delfino, M., Esu, D., Giuntelli, P., et al. (2017). Late Messinian mollusks and vertebrates from Moncucco Torinese, North-Western Italy. Paleoecological and paleoclimatological implications. Palaeontologia Electronica, 20.1.10A, 1–66.Google Scholar
  78. Colombero, S., Angelone, C., Bonelli, E., Carnevale, G., Cavallo, O., Delfino, M., et al. (2014). The upper Messinian assemblages of fossil vertebrate remains of Verduno (NW Italy): another brick for a latest Miocene bridge across the Mediterranean. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 272, 287–324.CrossRefGoogle Scholar
  79. Conrad, J. L. (2008). Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310, 1–182.CrossRefGoogle Scholar
  80. Conrad, J. L., Ast, J. C., Montanari, S., & Norell, M. A. (2010). A combined evidence phylogenetic analysis of Anguimorpha (Reptilia: Squamata). Cladistics, 16, 1–48.Google Scholar
  81. Conrad, J. L., Balcarcel, A., & Mehling, C. (2012). Earliest example of a giant monitor lizard (Varanus, Varanidae, Squamata). PLoS ONE, 7, e41767.CrossRefGoogle Scholar
  82. Crespo, E. G. (2001). Paleo-herpetofauna de Portugal. Lisbon: Museu Bocage.Google Scholar
  83. Daza, J. D., Bauer, A. M., & Snively, E. D. (2014). On the fossil record of the Gekkota. The Anatomical Record, 97, 433–462.CrossRefGoogle Scholar
  84. De Gregorio, A. (1925). Mammiferi quaternari di Sicilia (Microfauna). Mammiferi e altri vertebrati (Myoxus, Lepus, Lagomys, Pellegrinia, Mustela, Crocidura, Lacerta e Testudo etc.). Annales de Geologie et Paléontologie, 43, 1–19.Google Scholar
  85. de Rochebrune, A. (1884). Faune ophiologique des Phosphorites du Quercy. Mémoires de la Société des sciences naturelles de Saône-et-Loire, 5, 149–164.Google Scholar
  86. Delfino, M. (1997a). Italian paleoerpetofauna database: Neogene-Quaternary. In Z. Roček, & S. Hart (Eds.), Herpetology ‘97. Abstract of the III World Congress of Herpetology, 210 August 1997, Prague, Czech Republic (51–52.). Prague: Third World Congress of Herpetology.Google Scholar
  87. Delfino, M. (1997b). Blanus from the Early Pleistocene of Southern Italy: another small tessera from a big mosaic. In W. Böhme, W. Bischoff, & T. Ziegler (Eds.), Herpetologia Bonnensis (89–97.). Bonn: Societas Europaea Herpetologica.Google Scholar
  88. Delfino, M. (2002). Erpetofaune Italiane del Neogene e del Quaternario. Modena: University of Modena and Reggio Emilia.Google Scholar
  89. Delfino, M. (2003). A Pleistocene amphisbaenian from Sicily. Amphibia-Reptilia, 24, 407–414.CrossRefGoogle Scholar
  90. Delfino, M. (2004). The Middle Pleistocene herpetofauna of Valdemino Cave (Liguria, North-Western Italy). Herpetological Journal, 14, 113–128.Google Scholar
  91. Delfino, M. (2006). Il registro fossile della moderna erpetofauna italiana. In R. Sindaco, G. Doria, E. Razzetti, & F. Bernini (Eds.), Atlante degli anfibi e dei rettili d’Italia/Atlas of Italian amphibians and reptiles (pp. 96–119). Firenze: Societas Herpetologica Italica, Edizioni Polistampa.Google Scholar
  92. Delfino, M. (2013). Cenozoic herpetofaunas of Apulia (Southern Italy). In G. Scillitani, C. Liuzzi, L. Lorusso, F. Mastropasqua, & P. Ventrella (Eds.), Atti IX Congresso Nazionale della Societas Herpetologica Italica (Bari - Conversano, 26–30 settembre 2012) (pp. 99–103). Conversano: Tipolitografia Pineta.Google Scholar
  93. Delfino, M., & Bailon, S. (2000). Early Pleistocene herpetofauna from Cava Dell’Erba and Cava Pirro (Apulia, Southern Italy). Herpetological Journal, 10, 95–110.Google Scholar
  94. Delfino, M., Bailon, S., & Pitruzzella, G. (2011). The late Pliocene amphibians and reptiles from “Capo Mannu D1 Local Fauna” (Mandriola, Sardinia, Italy). Geodiversitas, 33, 357–382.CrossRefGoogle Scholar
  95. Delfino, M., Kotsakis, T., Arca, M., Tuveri, C., Pitruzzella, G., & Rook, L. (2008). Agamid lizards from the Plio-Pleistocene of Sardinia (Italy) and an overview of the European fossil record of the family. Geodiversitas, 30, 641–656.Google Scholar
  96. Delfino, M., Rage, J.-C., Bolet, A., & Alba, D. M. (2013). Early Miocene dispersal of the lizard Varanus into Europe: reassessment of vertebral material from Spain. Acta Palaeontologica Polonica, 58, 731–735.Google Scholar
  97. Delfino, M., & Rook, L. (2008). The fossil amphibians and reptiles of Sardinia: a summary. In C. Corti (Ed.), Herpetologia Sardiniae (pp. 192–195). Latina: Societas Herpetologica Italica/Edizioni Belvedere.Google Scholar
  98. Depéret, C. (1890). Les animaux pliocènes du Roussillon. Mémoires de la Société géologique de France, Paléontologie, 3, 1–194.Google Scholar
  99. Estes, R. (1969). Die Fauna der Miozänen Spaltenfüllung von Neudorf an der March (CSSR). Reptilia (Lacertilia). Sitzungsberichte der Akademie der Wissenschaften mathematisch-naturwissenschaftliche Klasse, 178, 77–82.Google Scholar
  100. Estes, R. (1983). Handbuch der Paläoherpetologie 10A. Sauria terrestria, Amphisbaenia. Munich: Friedrich Pfeil.Google Scholar
  101. Evans, E. S. (1991). A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of England. Zoological Journal of the Linnean Society, 103, 391–412.CrossRefGoogle Scholar
  102. Evans, S. E. (1994). A new anguimorph lizard from the Jurassic and lower Cretaceous of England. Palaeontology, 37, 33–49.Google Scholar
  103. Evans, S. E. (1998). Crown group lizards (Reptilia, Squamata) from the Middle Jurassic of the British Isles. Palaeontographica, Abteilung A, 250, 123–154.Google Scholar
  104. Evans, S. E. (2008). The skull of lizards and Tuatara. In C. Gans, A. Gaunt., & K. Adler (Eds.), Biology of the Reptilia, vol. 20 (The skull of Lepidosauria). Contributions to Herpetology, 23, 1–347.Google Scholar
  105. Evans, S. E., Barrett, P. M., Hilton, J., Butler, R., Jones, M. E. H., Liang, M. M., et al. (2006). The Middle Jurassic vertebrate assemblage of Skye, Scotland. In S. E. Evans, & P. M. Barrett (Eds.), Ninth Symposium on Mesozoic Terrestrial Ecosystems and Biota (36–39.). London: Natural History Museum Publications.Google Scholar
  106. Evans, S. E., & Milner, A. R. (1994). Middle Jurassic microvertebrate assemblages from the British Isles. In N. C. Fraser & E. D. Sues (Eds.), In the shadow of the dinosaurs: Early Mesozoic tetrapods (pp. 303–321). Cambridge: Cambridge University Press.Google Scholar
  107. Evans, S. E., Prasad, G. V. R., & Manhas, B. K. (2002). Fossil lizards from the Jurassic Kota Formation of India. Journal of Vertebrate Paleontology, 22, 299–312.CrossRefGoogle Scholar
  108. Ferrandini, J., Salotti, M., Bailon, S., Bonifay, M. F., Mourer-Chauviré, C., & Real-Testud, A. M. (1995). Découverte d’importants remplissages fossilifères d’âge pléistocène supérieur et holocène dans le karst de la région d’Oletta (Haute Corse). Geobios, 28, 117–124.CrossRefGoogle Scholar
  109. Folie, A., Smith, R., & Smith, T. (2013). New amphisbaenian lizards from the Early Paleogene of Europe and their implications for the early evolution of modern amphisbaenians. Geologica Belgica, 16, 227–235.Google Scholar
  110. Fraser, N. C. (1982). A new rhynchocephalian from the British Upper Trias. Palaeontology, 25, 709–725.Google Scholar
  111. Fraser, N. C., & Benton, M. J. (1989). The Triassic reptiles Brachyrhinodon and Polysphenodon and the relationships of the sphenodontids. Zoological Journal of the Linnean Society, 96, 413–445.CrossRefGoogle Scholar
  112. Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P., & Bauer, A. M. (2012). Repeated origin and loss of adhesive toepads in geckos. PLoS One, 7, e39429.CrossRefGoogle Scholar
  113. Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P., & Bauer, A. M. (2015). Into the light: diurnality has evolved multiple times in geckos. Biological Journal of the Linnean Society, 115, 896–910.CrossRefGoogle Scholar
  114. García-Porta, J., Quintana, J., & Bailon, S. (2002). Primer hallazgo de Blanus sp. (Amphisbaenia, Reptilia) en el Neógeno balear. Revista Española de Herpetología, 16, 19–28.Google Scholar
  115. Gaudry, A. (1862). Animaux fossiles et géologie de l’Attique d’après les recherchers faites en 1855–56 et an 1860. Paris: F. Savy Editeur.Google Scholar
  116. Gauthier, J., Kearney, M., Maisano, J. A., Rieppel, O., & Behlke, A. D. B. (2012). Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53, 3–308.CrossRefGoogle Scholar
  117. Georgalis, G. L. (2017). Necrosaurus or Palaeovaranus? Appropriate nomenclature and taxonomic content of an enigmatic fossil lizard clade (Squamata). Annales de Paléontologie, 103, 293–303.CrossRefGoogle Scholar
  118. Georgalis, G. L., Villa, A., & Delfino, M. (2016a). First description of a fossil chamaeleonid from Greece and its relevance for the European biogeographic history of the group. The Science of Nature, 103, 1–12.CrossRefGoogle Scholar
  119. Georgalis, G. L., Villa, A., & Delfino, M. (2017a). Fossil lizards and snakes from Ano Metochi—a diverse squamate fauna from the latest Miocene of northern Greece. Historical Biology, 29, 730–742.CrossRefGoogle Scholar
  120. Georgalis, G. L., Villa, A., & Delfino, M. (2017b). The last European varanid: demise and extinction of monitor lizards (Squamata, Varanidae) from Europe. Journal of Vertebrate Paleontology, 37, e1301946.CrossRefGoogle Scholar
  121. Georgalis, G. L., Villa, A., & Delfino, M. (2018). The last amphisbaenian (Squamata) from continental Eastern Europe. Annales de Paléontologie, 104, 155–159.CrossRefGoogle Scholar
  122. Georgalis, G. L., Villa, A., Vlachos, E., & Delfino, M. (2016b). Fossil amphibians and reptiles from Plakias, Crete: a glimpse into the earliest late Miocene herpetofaunas of southeastern Europe. Geobios, 49, 433–444.CrossRefGoogle Scholar
  123. Gerhardt, K. (1903). Ophisaurus ulmensis n. sp. aus dem Untermiozän von Ulm a. D. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg, 59, 67–71.Google Scholar
  124. Gervais, P. (1859). Zoologie et Paléontologie Françaises. Paris: Arthus Bertrand.Google Scholar
  125. Gulia, G. (1912). La geologia ed i fossili delle Isole Maltesi. In G. Muscat (Ed.), General Guide to Malta and Gozo for the year 1912 (pp. 291–318). Valletta: The Malta Herald.Google Scholar
  126. Gulia, G. (1914). Uno sguardo alla zoologia delle “Isole Maltesi”. In L. Jourin (Ed.), IX congrès international de zoologie tenu á Monaco du 25 au 30 mars 1913 (pp. 545–555). Imprimerie Oberthür: Rennes.Google Scholar
  127. Gvoždík, V., Benkovský, N., Crottini, A., Bellati, A., Moravec, J., Romano, A., et al. (2013). An ancient lineage of slow worms, genus Anguis (Squamata: Anguidae), survived in the Italian Peninsula. Molecular Phylogenetics and Evolution, 69, 1077–1092.CrossRefGoogle Scholar
  128. Gvoždík, V., Jandzik, D., Lymberakis, P., Jablonski, D., & Moravec, J. (2010). Slow worm, Anguis fragilis (Reptilia: Anguidae) as a species complex: Genetic structure reveals deep divergences. Molecular Phylogenetics and Evolution, 55, 460–472.CrossRefGoogle Scholar
  129. Harris, D. J., Batista, V., Carretero, M. A., & Ferrand, N. (2004). Genetic variation in Tarentola mauritanica (Reptilia: Gekkonidae) across the Strait of Gibraltar derived from mitochondrial and nuclear DNA sequences. Amphibia-Reptilia, 25, 451–459.CrossRefGoogle Scholar
  130. Hedges, S. B., & Vidal, N. (2009). Lizards, snakes, and amphisbaenians (Squamata). In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 383–389). New York: Oxford University Press.Google Scholar
  131. Hoffstetter, R. (1942). Sur la présence d’Amphisbaenidae dans les gisements tertiaires français. Comptes rendues des Séances de la Societé de Géologie de France, 3–4, 24–25.Google Scholar
  132. Hoffstetter, R. (1943). Varanidae et Necrosauridae fossiles. Bulletin du Muséum National d’Histoire Naturelle, 15, 134–141.Google Scholar
  133. Hoffstetter, R. (1944). Sur les Scincidae fossiles. I. Formes européennes et nord-américaines. Bulletin du Muséum National d’Histoire Naturelle, Paris, 16, 547–553.Google Scholar
  134. Hoffstetter, R. (1946). Sur les Gekkonidae fossiles. Bulletin du Muséum National d’Histoire Naturelle, 18, 195–203.Google Scholar
  135. Hoffstetter, R. (1969). Présence de Varanidae (Reptilia, Sauria) dans le Miocène de Catalogne. Considérations sur l’histoire de la famille. Bulletin du Muséum National d’Histoire Naturelle, 40, 1051–1064.Google Scholar
  136. Holman, J. A. (1998). Pleistocene amphibians and reptiles in Britain and Europe. Oxford monographs on geology and geophysics, 38, 1–254.Google Scholar
  137. Holmes, R. B., Murray, A. M., Attia, Y. S., Simons, E. L., & Chatrath, P. (2010). Oldest known Varanus (Squamata: Varanidae) from the upper Eocene and lower Oligocene of Egypt: support for an African origin of the genus. Palaeontology, 53, 1099–1110.CrossRefGoogle Scholar
  138. Ivanov, M., Ruta, M., Klembara, J., & Böhme, M. (2018). A new species of Varanus (Anguimorpha: Varanidae) from the early Miocene of the Czech Republic, and its relationships and palaeoecology. Journal of Systematic Palaeontology, 16, 767–797.CrossRefGoogle Scholar
  139. Jánossy, D. (1986). Pleistocene vertebrate faunas of Hungary. Budapest: Elsevier/Akadémiai Kiadó.Google Scholar
  140. Jones, M. E. H., Anderson, C. L., Hipsley, C. A., Müller, J., Evans, S. E., & Schoch, R. R. (2013). Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evolutionary Biology, 13, 208.CrossRefGoogle Scholar
  141. Jörg, E. (1965). Ophisaurus acuminatus nov. spec. (Anguidae, Rept.) von der pontischen Wirbeltier-Fundstätte Höwenegg Hegau. Beiträge zur naturkundlichen Forschungen in SW-Deutschland, 24, 21–30.Google Scholar
  142. Jost, J., Kälin, D., Börner, S., Vasilyan, D., Lawver, D., & Reichenbacher, B. (2015). Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 22–33.CrossRefGoogle Scholar
  143. Jovanović, M., Đurić, D., & Marković, Z. (2002). Tertiary reptiles of the central part of the Balkan peninsula. Biota, 3, 67–75.Google Scholar
  144. Karin, B. R., Metallinou, M., Weinell, J. L., Jackman, T. R., & Bauer, A. M. (2016). Resolving the higher-order phylogenetic relationships of the circumtropical Mabuya group (Squamata: Scincidae): an out-of-Asia diversification. Molecular Phylogenetics and Evolution, 102, 220–232.CrossRefGoogle Scholar
  145. Kearney, M. (2003). Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herpetological Monographs, 17, 1–74.CrossRefGoogle Scholar
  146. Klembara, J. (1979). Neue funde der gattungen Ophisaurus und Anguis (Squamata, Reptilia) aus dem Untermiozän Westböhmens (ČSSR). Vestník Ústředního Ústavu Geologického, 54, 163–170.Google Scholar
  147. Klembara, J. (1986). Neue funde der gattungen Pseudopus und Anguis (Reptilia, Anguinae) aus dei Pliopleistozänen Mitteleuropäischen lokalitäten. Geologica Carpathica, 37, 91–106.Google Scholar
  148. Klembara, J. (2008). A new anguimorph lizard from the lower Miocene of North-West Bohemia, Czech Republic. Palaeontology, 51, 81–94.CrossRefGoogle Scholar
  149. Klembara, J. (2015). New finds of anguines (Squamata, Anguidae) from the early Miocene of Northwest Bohemia (Czech Republic). Paläontologische Zeitschrift, 89, 171–195.CrossRefGoogle Scholar
  150. Klembara, J., Böhme, M., & Rummel, M. (2010). Revision of the anguine lizard Pseudopus laurillardi (Squamata, Anguidae) from the Miocene of Europe, with comments on paleoecology. Journal of Paleontology, 84, 159–196.CrossRefGoogle Scholar
  151. Klembara, J., & Green, B. (2010). Anguimorph lizards (Squamata, Anguimorpha) from the middle and late Eocene of the Hampshire Basin of southern England. Journal of Systematic Palaeontology, 8, 97–129.CrossRefGoogle Scholar
  152. Klembara, J., Hain, M., & Čerňanský, A. (2017). The first record of anguine lizards (Anguimorpha, Anguidae) from the early Miocene locality Ulm—Westtangente in Germany. Historical Biology, https://doi.org/10.1080/08912963.2017.1416469Google Scholar
  153. Klembara, J., Hain, M., & Dobiašová, K. (2014). Comparative anatomy of the lower jaw and dentition of Pseudopus apodus and the interrelationships of species of subfamily Anguinae (Anguimorpha, Anguidae). The Anatomical Record, 297, 516–544.CrossRefGoogle Scholar
  154. Klembara, J., & Rummel, M. (2018). New material of Ophisaurus, Anguis and Pseudopus (Squamata, Anguidae, Anguinae) from the Miocene of the Czech Republic and Germany and systematic revision and palaeobiogeography of the Cenozoic Anguinae. Geological Magazine, 155, 20–44.CrossRefGoogle Scholar
  155. Kosma, R. (2004). The dentitions of recent and fossil scincomorphan lizards (Lacertilia, Squamata)—systematics, functional morphology, palecology. Hannover: Universität Hannover.Google Scholar
  156. Kotsakis, T. (1977). I resti di anfibi e rettili pleistocenici della grotta di Spinagallo (Siracusa, Sicilia). Geologica Romana, 16, 211–229.Google Scholar
  157. Kretzoi, M., & Poulianos, N. (1981). Remarks on the middle and lower Pleistocene vertebrate fauna in the Petralona Cave. Anthropos, 8, 57–72.Google Scholar
  158. Lartet, E. (1851). Notice sur la colline de Sansan. Auch: J.-A. Portes.Google Scholar
  159. Lungu, A. N., Zerova, G. A., & Chkhikvadze, V. M. (1983). Pervie svedeniia o miotsenovom varane severnogo prichernomoriia. Soobshcheniya Akademii Nauk Gruziinskoi SSR, 110, 417–420.Google Scholar
  160. Mangili, G. (1980). Fossils reptiles of Simonelli cave. Quaderni della Accademia Nazionale dei Lincei, 249, 121–122.Google Scholar
  161. Mateo, J. A. (1988). Estudio sistemático y zoogeográfico de los lagartos ocelados, Lacerta lepida Daudin, 1802, y Lacerta pater (Lataste, 1880) (Sauria: Lacertidae). Sevilla: University of Sevilla.Google Scholar
  162. Meszoely, C. A. M., & Gasparik, M. (2002). First record of an agamid lizard from the Pleistocene of Hungary. Fragmenta Palaeontologica Hungarica, 20, 1–2.Google Scholar
  163. Meszoely, C. A. M., Schaff, C. R., & Jenkins, F., Jr. (1987). Early Jurassic sphenodontians from northeast Arizona. Journal of Vertebrate Paleontology, 7, 21A.Google Scholar
  164. Miklas-Tempfer, P. M. (2003). The Miocene herpetofaunas of Grund (Caudata; Chelonii, Sauria, Serpentes) and Mülbach am Manhartsberg (Chelonii, Sauria, Amphisbaenia, Serpentes), Lower Austria. Annalen des Naturhistorischen Museums in Wien, 104A, 195–235.Google Scholar
  165. Młynarski, M. (1956). Lizards from the Pliocene of Poland. Acta Palaeontologica Polonica, 1, 135–152.Google Scholar
  166. Młynarski, M. (1962). Notes on the amphibian and reptilian fauna of the Polish Pliocene and Early Pleistocene. Acta Zoologica Cracoviensia, 7, 177–194.Google Scholar
  167. Montoya, P., Alberdi, M. T., Barbadillo, L. J., Van Der Made, J., Morales, J., Murelaga, X., et al. (2001). Une faune très diversifiée du Pléistocène inférieur de la Sierra de Quibas (province de Murcia, Espagne). Comptes Rendus de l’Académie des Sciences, Earth and Planetary Science, 332, 387–393.Google Scholar
  168. Moody, S., & Roček, Z. (1980). Chamaeleo caroliquarti (Chamaeleonidae, Sauria) a new species from the lower Miocene of central Europe. Věstnik Ústředniho Ustavu Geologického, 55, 85–92.Google Scholar
  169. Morelli, N. (1891). Resti organici rinvenuti nella caverna delle Arene Candide. Atti della Società Ligustica di Scienze Naturali e Geografiche, 2, 171–205.Google Scholar
  170. Mukhopadhyay, G., Mukhopadhyay, S. K., Roychowdhury, M., & Parui, P. K. (2010). Stratigraphic correlation between different Gondwana basins of India. Journal of the Geological Society of India, 76, 251–266.CrossRefGoogle Scholar
  171. Müller, J. (1996). Eine neue Art der echten Eidechsen (Reptilia: Lacertilia: Lacertidae) aus dem Unteren Miozän von Poncenat, Frankreich. Mainzer Geowissenschaftliche Mitteilungen, 25, 79–88.Google Scholar
  172. Müller, J. (2001). A new fossil species of Euleptes from the early Miocene of Montaigu, France (Reptilia, Gekkonidae). Amphibia-Reptilia, 22, 341–348.CrossRefGoogle Scholar
  173. Müller, J., & Mödden, C. (2001). A fossil leaf-toed gecko from the Oppenheim-Nierstein Quarry (Lower Miocene, Germany). Journal of Herpetology, 35, 529–532.CrossRefGoogle Scholar
  174. Nopcsa, F. (1908). Zur Kenntnis der fossilen Eidechsen. Beiträge zur Paläontologie von Österreich, 21, 33–62.Google Scholar
  175. Papp, A., Thenius, E., Berger, W., & Weinfurter, E. (1953). Vösendorf - ein Lebensbild aus dem Pannon des Wiener Beckens. Ein beitrag zur geologie und paläontologie der unterpliozänen congerienschichten des südlichen Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien, 46, 1–109.Google Scholar
  176. Pomel, M. (1853). Catalogue méthodique et descriptif des vertébrés fossiles découverts dans le bassin hydrogeographique supérieur de la Loire, et surtout dans la vallée de son affluent principal, l´Allier. Paris: J.-B. Baillière.Google Scholar
  177. Prasad, G. V. R., & Manhas, B. K. (2007). A new docodont mammal from the Jurassic Kota Formation of India. Palaeontologia Electronica, 10, 7A.Google Scholar
  178. Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93.CrossRefGoogle Scholar
  179. Rage, J.-C. (2013). Mesozoic and Cenozoic squamates of Europe. Palaeobiodiversity and Palaeoenvironments, 93, 517–534.CrossRefGoogle Scholar
  180. Rage, J.-C., & Bailon, S. (2005). Amphibians and squamate reptiles from the late early Miocene (MN 4) of Béon 1 (Montréal-du-Gers, southwestern France). Geodiversitas, 27, 413–441.Google Scholar
  181. Rage, J.-C., & Szyndlar, Z. (2005). Latest Oligocene–early Miocene in Europe: dark Period for booid snakes. Comptes Rendus Palevol, 4, 428–435.CrossRefGoogle Scholar
  182. Rato, C., Carranza, S., & Harris, D. J. (2011). When selection deceives phylogeographic interpretation: the case of the Mediterranean house gecko, Hemidactylus turcicus (Linnaeus, 1758). Molecular Phylogenetics and Evolution, 58, 365–373.CrossRefGoogle Scholar
  183. Rato, C., Carranza, S., Perera, A., Carretero, M. A., & Harris, D. J. (2010). Conflicting patterns of nucleotide diversity between mtDNA and nDNA in the Moorish gecko, Tarentola mauritanica. Molecular Phylogenetics and Evolution, 56, 962–971.CrossRefGoogle Scholar
  184. Rauscher, K. L. (1992). Die Echsen (Lacertilia, Reptilia) aus dem Plio-Pleistozän von Bad Deutsch-Altenburg, Niederösterreich. Beiträge zur paläontologie von Österreich, 17, 81–177.Google Scholar
  185. Rauscher, K. L. (1995). Die herpetofauna der Vraona-Hölhe (Attika) in Griechenland. Annales Géologiques des Pays Helléniques, 36, 39–41.Google Scholar
  186. Renesto, S., & Posenato, R. (2003). A new lepidosauromorph reptile from the Middle Triassic of the Dolomites (Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 109, 463–474.Google Scholar
  187. Reynoso, V. H. (1998). Huehuecuetzpali mixtecus gen. et sp. nov: a basal squamate (Reptilia) from the Early Cretaceous of Tepexi de Rodríguez, Central México. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 353, 477–500.CrossRefGoogle Scholar
  188. Roček, Z. (1984). Lizards (Reptilia: Sauria) from the lower Miocene locality Dolnice (Bohemia, Czechoslovakia). Rozpravy Československé Akademie Věd - Řada Matematických a Přírodních Věd, 94, 3–64.Google Scholar
  189. Roger, O. (1898). Wirbelthierreste aus dem Dinotheriensande, II. Theil. Bericht des Naturwissenschaftlichen Vereins fur Schwaben und Neuburg (a.V.) in Augsburg, 33, 385–396.Google Scholar
  190. Rook, L., Abbazzi, L., Angelone, C., Arca, M., Barisone, G., Bedetti, C., et al. (2003). Osservazioni preliminari sui vertebrati fossili plio-pleistocenici del Monte Tuttavista (Orosei, Sardegna). International Journal of Archaeology—Sardinia Corsica et Baleares Antiquae, 1, 11–29.Google Scholar
  191. Salotti, M., Bailon, S., Bonifay, M.-F., Courtois, J.-Y., Dubois, J.-N., Ferrandini, J., et al. (1997). Castiglione 3, un nouveau remplissage fossilifère d’âge Pléistocène moyen dans le karst de la région d’Oletta (Haute-Corse). Comptes Rendus de l’Académie des Sciences, Paris, IIa, 324, 67–74.Google Scholar
  192. Salotti, M., Louchart, A., Bailon, S., Lorenzo, S., Oberlin, C., et al. (2008). A Teppa di U Lupinu Cave (Corsica, France)—human presence since 8500 years BC, and the enigmatic origin of the earlier, late Pleistocene accumulation. Acta Zoologica Cracoviensia, 51A, 15–34.CrossRefGoogle Scholar
  193. Sampaio, F. L., Harris, D. J., Perera, A., & Salvi, D. (2015). Phylogenetic and diversity patterns of Blanus worm lizards (Squamata: Amphisbaenia): insights from mitochondrial and nuclear gene genealogies and species tree. Journal of Zoological Systematics and Evolutionary Research, 53, 45–54.CrossRefGoogle Scholar
  194. Savona Ventura, C. (1984). The fossil herpetofauna of the Maltese islands, a review. Naturalista Siciliano, 8, 93–106.Google Scholar
  195. Schleich, H. H. (1983). Die mittelmiozäne Fossil-Lagerstätte Sandelzhausen. 13. Chamaeleo bavaricus sp. nov., ein neuer Nachweis aus dem Jungtertiär Süddeutschlands. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, 23, 77–82.Google Scholar
  196. Schleich, H. H. (1984). Neue Reptilienfunde aus dem Tertiär Deutschlands. 2. Chamaeleo pfeili sp. nov. von der untermiozänen Fossilfundstelle Rauscheröd/Niederbayern (Reptilia, Sauria, Chamaeleonidae). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, 24, 97–104.Google Scholar
  197. Schleich, H. H. (1985). Neue reptilienfunde aus dem Tertiär Deutschlands. 3. Erstnachweis von Doppelschleichen (Blanus antiquus sp.nov.) aus dem Mittelmiozän Süddeutschlands. Münchner Geowissenschaftliche Abhandlungen Reihe A, 4, 1–16.Google Scholar
  198. Schleich, H. H. (1987). Neue reptilienfunde aus dem Tertiär Deutschlands. 7. Erstnachweis von Geckos aus dem Mittelmiozän Süddeutschlands: Palaeogekko risgoviensis nov. gen., nov. spec. (Reptilia, Sauria, Gekkonidae). Mitteilungen der Bayerischen Staatssammlung für Palaeontologie und Historische Geologie, 27, 67–93.Google Scholar
  199. Schleich, H. H. (1988). Neue reptilienfunde aus dem Tertiär Deutschlands 8. Palaeoblanus tobieni n.gen., n.sp.—Neue Doppelschleichen aus dem Tertiär Deutschlands. Paläontologische Zeitschrift, 62, 95–105.CrossRefGoogle Scholar
  200. Schleich, H. H. (1994). Neue Reptilienfunde aus dem Tertiär Deutschlands 15. Neue Funde fossiler Chamäleonen aus dem Neogen Süddeutschlands. Courier Forschungsinstitut Senckenberg, 173, 175–195.Google Scholar
  201. Schmitz, A., Mausfeld, P., & Embert, D. (2004). Molecular studies on the genus Eumeces Wiegmann, 1834: phylogenetic relationships and taxonomic implications. Hamadryad, 28, 73–89.Google Scholar
  202. Sears, M. W., & Angilletta, M. J., Jr. (2004). Body size clines in Sceloporus lizards: proximate mechanisms and demographic constraints. Integrative and Comparative Biology, 44, 433–442.CrossRefGoogle Scholar
  203. Sickenberg, O. (1971). Revision der wirbeltierfauna der Höhle Petralona (Griech, Mazedonien). Annales Géologiques des Pays Helléniques, 23, 230–264.Google Scholar
  204. Sillero, N., Campos, J., Bonardi, A., Corti, C., Creemers, R., Crochet, P.-A., et al. (2014). Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia-Reptilia, 35, 1–31.CrossRefGoogle Scholar
  205. Simões, T. R., Caldwell, M. W., Tałanda, M., Bernardi, M., Palci, A., Vernygora, O., et al. (2018). The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature, 557, 706–709.CrossRefGoogle Scholar
  206. Sindaco, R., Kornilios, P., Sacchi, R., & Lymberakis, P. (2014). Taxonomic reassessment of Blanus strauchi (Bedriaga, 1884) (Squamata: Amphisbaenia: Blanidae), with the description of a new species from South-East Anatolia (Turkey). Zootaxa, 3795, 311–326.CrossRefGoogle Scholar
  207. Smith, K. T. (2017). First crocodile-tailed lizard (Squamata: Pan-Shinisaurus) from the Paleogene of Europe. Journal of Vertebrate Paleontology, 37, e1313743.CrossRefGoogle Scholar
  208. Smith, K. T., & Gauthier, J. A. (2013). Early Eocene lizards of the Wasatch Formation near Bitter Creek, Wyoming: diversity and paleoenvironment during an interval of global warming. Bulletin of the Peabody Museum of Natural History, 54, 135–230.CrossRefGoogle Scholar
  209. Smith, K. T., Maul, L. C., Flemming, F., Barkai, R., & Gopher, A. (2016). The microvertebrates of Qesem Cave: a comparison of the two concentrations. Quaternary International, 398, 233–245.CrossRefGoogle Scholar
  210. Smith, K. T., & Scanferla, A. (2016). Fossil snake preserving three trophic levels and evidence for an ontogenetic dietary shift. Palaeobiodiversity and Palaeoenvironments, 96, 589–599.CrossRefGoogle Scholar
  211. Smith, K. T., Schaal, S. F. K., & Habersetzer, J. (2018). Messel: an ancient greenhouse ecosystem. Stuttgart: Schweizerbart.Google Scholar
  212. Speybroeck, J., Beukema, W., Bok, B., & Van der Voort, J. (2016). Field guide to the amphibians and reptiles of Britain and Europe. London: Bloomsbury Publishing.Google Scholar
  213. Swinton, W. E. (1939). A new Triassic rhynchocephalian from Gloucestershire. Annals and Magazine of Natural History: Zoology, Botany, and Geology, 4, 591–594.CrossRefGoogle Scholar
  214. Talavera, R. R., & Sanchíz, B. (1983). Restos holocénicos de Camaleón común, Chamaeleo chamaeleon (L.) de Málaga. Boletín de la Real Sociedad Española de Historia Natural, Sección Geológica, 81, 81–84.Google Scholar
  215. Tempfer, P. M. (2003). Amphibians and reptiles of the Karpatian Central Paratethys. In R. Brzobohatý, I. Cicha, M. Kováč, & F. Rögl (Eds.), The Karpatian—a Lower Miocene Stage of the Central Paratethys (pp. 285–291). Brno: Masarykova Univerzita v Brně.Google Scholar
  216. Tempfer, P. M. (2005). The herpetofauna (Amphibia: Caudata, Anura; Reptilia: Scleroglossa) of the upper Miocene locality Kohfidisch (Burgenland, Austria). Beiträge zur Paläontologie, 29, 145–253.Google Scholar
  217. Tschopp, E., Villa, A., Camaiti, M., Ferro, L., Tuveri, C., Rook, L., et al. (2018). The first fossils of Timon (Squamata: Lacertinae) from Sardinia (Italy) and potential causes for its local extinction in the Pleistocene. Zoological Journal of the Linnean Society, https://doi.org/10.1093/zoolinnean/zly003CrossRefGoogle Scholar
  218. Uetz, P., Freed, P., & Hošek, J. (Eds.). The Reptile Database, http://www.reptile-database.org, accessed April 2018.Google Scholar
  219. Venczel, M. (2006). Lizards from the late Miocene of Polgárdi (W-Hungary). Nymphaea: Folia Naturae Bihariae, 33, 25–38.Google Scholar
  220. Venczel, M., & Hír, J. (2013). Amphibians and squamates from the Miocene of Felsötárkány Basin, N-Hungary. Palaeontographica. Abt. A: Palaeozoology - Stratigraphy, 300, 117–158.Google Scholar
  221. Venczel, M., & Sanchiz, B. (2006). Lower Miocene amphibians and reptiles from Oschiri (Sardinia, Italy). Hantkeniana, 5, 72–75.Google Scholar
  222. Venczel, M., & Ştiucă, E. (2008). Late middle Miocene amphibians and squamate reptiles from Tauţ, Romania. Geodiversitas, 30, 731–763.Google Scholar
  223. Vigne, J.-D., Bailon, S., & Cuisin, J. (1997). Biostratigraphy of amphibians, reptiles, birds and mammals in Corsica and the role of man in the Holocene faunal turnover. Anthropozoologica, 25(26), 587–604.Google Scholar
  224. Vigne, J.-D., Bailon, S., Cuisin, J., & Desse-Berset, N. (2002). Sensibilité des microvertébrés aux fluctiations hygrométriques tardilaciaires et holocènes: deux séquences en zone méditerranéenne humide (Grítulu et Monte di Tuda, Haut-Corse). In J.-P. Bravard & M. Magny (Eds.), Histoire des rivières et des lacs de Lascaux à nos jours (pp. 269–277). Paris: Errance.Google Scholar
  225. Vijaya, X., & Prasad, G. V. R. (2001). Age of the Kota formation, Pranhita-Godavari Valley, India: a palynological approach. Journal of the Palaeontological Society of India, 46, 77–93.Google Scholar
  226. Villa, A., Blain, H.-A., & Delfino, M. (2018a). The Early Pleistocene herpetofauna of Rivoli Veronese (Northern Italy) as evidence for humid and forested glacial phases in the Gelasian of Southern Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 393–403.CrossRefGoogle Scholar
  227. Villa, A., Blain, H.-A., Van Den Hoek Ostende, L. W., & Delfino, M. (2018b). Fossil amphibians and reptiles from Tegelen (Province of Limburg) and the early Pleistocene palaeoclimate of The Netherlands. Quaternary Science Reviews, 187, 203–219.CrossRefGoogle Scholar
  228. Villa, A., Bon, M., & Delfino, M. (2018c). Trapped in a roman well: amphibians and reptiles from Tenuta Zuccarello near Marcon, Venice, Italy. Historical Biology.  https://doi.org/10.1080/08912963.2018.1470170.CrossRefGoogle Scholar
  229. Villa, A., Daza, J. D., Bauer, A. M., & Delfino, M. (2018d). Comparative cranial osteology of European gekkotans (Reptilia, Squamata). Zoological Journal of the Linnean Society.  https://doi.org/10.1093/zoolinnean/zlx104.CrossRefGoogle Scholar
  230. Villa, A., & Delfino, M. (2017). Southern Germany: an early to middle Miocene lizard melting pot? Zitteliana, 91, 93.Google Scholar
  231. Villa, A., Kirchner, M., Alba, D. M., Bernardini, F., Bolet, A., Luján, À. H., et al. (2017b). Comparative cranial osteology of extant and extinct Blanus (Squamata, Amphisbaenia). In M. Menegon, A. Rodriguez-Prieto, & M. C. Deflorian (Eds.), AttiXI Congresso Nazionale della Societas Herpetologica Italica. Trento, 2225 settembre 2016 (329–333). Pescara: Ianieri Edizioni.Google Scholar
  232. Villa, A., Kosma, R., Čerňanský, A., & Delfino, M. (2018e). Taxonomical assessment of ‘Bavaricordylus’ Kosma, 2004 (Reptilia, Squamata). Journal of Vertebrate Paleontology.  https://doi.org/10.1080/02724634.2018.1487844.CrossRefGoogle Scholar
  233. Villa, A., Rook, L., Sami, M., & Delfino, M. (2016). Amphibians and reptiles from Cava Monticino (Ravenna, Italy) in the frame of the late Miocene Italian herpetofaunas. In L. Rook, S. Bartolini, & E. Ghezzo (Eds.), Paleodays 2016. La Società Paleontologica Italiana a Faenza. XVI riunione annuale SPI, Faenza (82). Torino: Centro Stampa/Regione Piemonte.Google Scholar
  234. Villa, A., Tschopp, E., Georgalis, G. L., & Delfino, M. (2017a). Osteology, fossil record and palaeodiversity of the European lizards. Amphibia-Reptilia, 38, 79–88.CrossRefGoogle Scholar
  235. Vitt, L. J., & Caldwell, J. P. (2009). Herpetology (3rd ed.). Burlington: Academic Press.Google Scholar
  236. Weithofer, A. (1888). Beiträge zur Kenntniss der Fauna von Pikermi bei Athen. Beiträge Paläontologie Österreich-Ungarns, 6, 225–292.Google Scholar
  237. Whiteside, D. I. (1986). The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov. and the modernizing of a living fossil. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 312, 379–430.CrossRefGoogle Scholar
  238. Zerova, G. A., & Chkhikvadze, V. M. (1986). Neogene varanids of the URSS. In Z. Rocek (Ed.), Studies in Herpetology (pp. 689–694). Prague: Societas Herpetologica Europaea.Google Scholar
  239. Zittel, K. (1889). Handbuch der Paläontologie. Munich: R. Oldenbourg.Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di TorinoTorinoItaly
  2. 2.Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Edifici ICTA-ICPBarcelonaSpain

Personalised recommendations