Advertisement

Swiss Journal of Palaeontology

, Volume 134, Issue 2, pp 207–216 | Cite as

Non-invasive imaging techniques combined with morphometry: a case study from Spirula

  • René HoffmannEmail author
  • Daniel Reinhoff
  • Robert Lemanis
Article

Abstract

Spirula spirula is a unique deep-sea squid with unknown taxonomic status. Precise description of shell morphology may help to decide whether the genus contains one or more species. Here, a straight forward description of ontogenetic changes of shell parameters is presented for a single shell of Spirula spirula. Using micro-computed tomography, surface and volumetric data, e.g., chamber volumes and surface areas, as well as siphuncle volumes and surface areas were collected and used for the description. Advantage of the method, combining non-invasive imaging techniques with classical morphometry, is discussed.

Keywords

Computed tomography Species description Cephalopod shells 2D and 3D Conch features 

Notes

Acknowledgments

Svetlana Nikolaeva provided information about the deposition of Linné syntypes of Spirula spirula. Kerstin Warnke kindly donated a complete Spirula shell for this study. We thank the two reviewers for the comments improving an earlier version of this manuscript. RH and RL acknowledge financial support from the Deutsche Forschungsgemeinschaft (Grant Number HO 4674/2-1).

References

  1. Bandel, K., & Boletzky, S. V. (1979). A comparative study of structure, development and morphological relationships of chambered cephalopod shells. Veliger, 21, 313–354.Google Scholar
  2. Bucher, H., Landman, N.H., Guex, J., Klofak, S.M. (1996). Mode and rate of growth in ammonoids. In N.H. Landman, K. Tanabe, R.A. Davis (Eds.). Ammonoid Paleobiology. Topics in Geobiology, 13, 407-461, New York, Plenum Press.Google Scholar
  3. Dagys, A. S., & Weitschat, W. (1993). Extensive infraspecific variation in a Triassic ammonoid from Siberia. Lethaia, 26, 113–121.CrossRefGoogle Scholar
  4. De Baets, K., Klug, C., & Korn, D. (2009). Anetoceratinae (Ammonoidea, Early Devonian) from the Eifel and Harz Mountains (Germany), with a revision of their genera. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 252, 361–376.CrossRefGoogle Scholar
  5. De Baets, K., Klug, C., Korn, D., & Landman, N. H. (2012). Early evolutionary trends in ammonoid embryonic development. Evolution, 66, 1788–1806.CrossRefGoogle Scholar
  6. De Baets, K., Klug, C., & Monnet, C. (2013). Intraspecific variability through ontogeny in early ammonoids. Paleobiology, 39, 75–94.CrossRefGoogle Scholar
  7. Hammer, O., & Bucher, H. (2005). Buckman´s first law of covariation—a case of proportionality. Lethaia, 38, 67–72.CrossRefGoogle Scholar
  8. Haring, E., Kruckenhauser, L., & Lukeneder, A. (2012). New DNA sequence data on the enigmatic Spirula spirula (Linnaeus, 1758) (Decabrachia, suborder Spirulina). Ann Naturhist Mus Wien B, 113, 37–48.Google Scholar
  9. Hoffmann, R., Lemanis, R., Naglik, C., & Klug, C. (2015). Ammonoid buoyancy. In C. Klug, D. Korn, K. De Baets, I. Kruta, & R. H. Mapes (Eds.), Ammonoid paleobiology (Vol. I, p. 43). Germany: From Anatomy to Ecology Topics in Geobiology.Google Scholar
  10. Hoffmann, R., Schultz, J. A., Schellhorn, R., Rybacki, E., Keupp, H., Gerden, S. R., et al. (2014). Non-invasive imaging methods applied to neo- and paleo- ontological cephalopod research. Biogeosciences, 11, 2721–2739.CrossRefGoogle Scholar
  11. Hoffmann, R., & Warnke, K. (2014). Spirula—das unbekannte Wesen aus der Tiefsee (Spirula—the unknown deep sea creature. Denisia, 32, 33–46.Google Scholar
  12. Hohenegger, J., & Tatzreiter, F. (1992). Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Triassic). J Paleontol, 66, 801–816.Google Scholar
  13. Hölder, H. (1956). Über Anomalien an jurassischen Ammoniten. Paläontologische Zeitschrift, 30, 95–107.CrossRefGoogle Scholar
  14. Klug, C., Meyer, E., Richter, U., & Korn, D. (2008). Soft-tissue imprints in fossil and recent cephalopod septa and septum formation. Lethaia, 41, 477–492.CrossRefGoogle Scholar
  15. Korn, D. (2010). A key for the description of Palaeozoic ammonoids. Fossil Record, 13, 5–12.CrossRefGoogle Scholar
  16. Korn, D., & Klug, C. (2007). Conch form analysis, variability, morphological disparity, and mode of life of the frasnian (Late Devonian) ammonoid Manticoceras from coumiac (Montagne Noire, France). In N. H. Landman, R. A. Davis, & R. H. Mapes (Eds.), Cephalopods Present and Past—New Insights and Fresh Perspectives (pp. 57–85). Dordrecht: Springer.CrossRefGoogle Scholar
  17. Kraft, S., Korn, D., & Klug, C. (2008). Patterns of ontogenetic septal spacing in Carboniferus ammonoids. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 250, 31–44.CrossRefGoogle Scholar
  18. Kröger, B. (2002). On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia, 35, 61–70.CrossRefGoogle Scholar
  19. Kröger, B. (2003). The size of the siphuncle in cephalopod evolution. Senckenbergiana Lethaea, 83, 39–52.CrossRefGoogle Scholar
  20. Kutygin, R. V. (1998). Forma rakovin permskikh ammonoidei severo-vostoka Rossii. Paleontologicheskiy Zhurnal, 1998(1), 20–31.Google Scholar
  21. Landman, N. H., Kennedy, W. J., Cobban, W. A., & Larson, N. L. (2010). Scaphites of the “Nodosus Group” from the Upper Cretaceous (Campanian) of the western interior of North America. Bulletin of the American Museum of Natural History, 342, 1–242.CrossRefGoogle Scholar
  22. Lemanis, R., Zachow, S., Fusseis, F., & Hoffmann, R. (2015). A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells. Paleobiology, 44, 313–329. doi: 10.1017/pab.2014.17.CrossRefGoogle Scholar
  23. Linnaeus, C., (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Editio decimal, reformata. Holmiae.Google Scholar
  24. Lukeneder, A., Harzhauser, M., Müllegger, S., & Piller, W. E. (2008). Stable isotopes (δ18O and delta δ13C) in Spirula spirula shells from three major oceans indicate developmental changes paralleling depth distributions. Marine Biology, 154, 175–182.CrossRefGoogle Scholar
  25. Monnet, C., Bucher, H., Wasmer, M., & Guex, J. (2010). Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, Biometry, Biostratigraphy and Intra-Specific Variability. Palaeontology, 53, 961–996.CrossRefGoogle Scholar
  26. Naglik, C., Monnet, C., Goetz, S., Kolb, C., De Baets, K., Tajika, A., & Klug, C. (2015). Growth trajectories of some major ammonoid subclades using grinding tomography data. Lethaia, 48, 29–46. doi: 10.1111/let.12085.CrossRefGoogle Scholar
  27. Neige, P., & Warnke, K. (2010). Just how many species of Spirula are there? A morphometric approach. In K. Tanabe, Y. Shigeta, T. Sasaki, & H. Hirano (Eds.), Cephalopods Present and Past (pp. 57–85). Tokyo: Tokai University Press.Google Scholar
  28. Ruzhencev, V. E. (1960). Printsipy sistematiki, sistema i filogeniya paleozoyskikh ammonoidey. Trudy Paleontologicheskogo Instituta Akademia Nauk SSSR, 6, 1–331.Google Scholar
  29. Samadi, S., David, P., & Jarne, P. (2000). Variation of shell shape in the clonal snail Melanoides tuberculata and its consequences for the interpretation of fossil series. Evolution, 54, 492–502.CrossRefGoogle Scholar
  30. Scholz, H., & Glaubrecht, M. (2010). A new and open coiled Valvata (Gastropoda) from the Pliocene Koobi Fora formation of the Turkana Basin, Northern Kenya. Journal of Palaeontology, 84, 996–1002.CrossRefGoogle Scholar
  31. Seilacher, A., & Gunji, P. Y. (1993). Morphogenetic countdowns in heteromorph shells. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 190, 237–265.Google Scholar
  32. Tanabe, K. (1993). Variability and mode of evolution of the Middle Cretaceous Ammonite Subprionocyclus (Ammonitina: Collignoniceratidae) from Japan. Geobios M.S., 15, 347–357.CrossRefGoogle Scholar
  33. Teso, V., Signorelli, J. H., & Pastorino, G. (2011). Shell phenotypic variation in the south-western Atlantic gastropod Olivancillaria carcellesi (Mollusca: Olividae). Journal of the Marine Biological Association of the United Kingdom., 91, 1089–1094.CrossRefGoogle Scholar
  34. Ward, P. D. (1987). The natural history of Nautilus. London: Unwin Hyman.Google Scholar
  35. Warnke, K. (2007). On the species status of Spirula spirula (Linné, 1758) (Cephalopoda): a new approach based on divergence of amino acid sequences between the canaries and new caledonia. In N. H. Landman, R. A. Davis, & R. H. Mapes (Eds.), Cephalopods present and past—new insights and fresh perspectives (pp. 144–155). Dordrecht: Springer.CrossRefGoogle Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2015

Authors and Affiliations

  • René Hoffmann
    • 1
    Email author
  • Daniel Reinhoff
    • 1
  • Robert Lemanis
    • 1
  1. 1.Department of Earth Sciences, Institute of Geology, Mineralogy, and Geophysics, Branch PaleontologyRuhr-Universität BochumBochumGermany

Personalised recommendations