Swiss Journal of Palaeontology

, Volume 134, Issue 1, pp 45–75 | Cite as

Neogene molluscs, shallow marine paleoenvironments, and chronostratigraphy of the Guajira Peninsula, Colombia

  • Austin J. W. Hendy
  • Douglas S. Jones
  • Federico Moreno
  • Vladimir Zapata
  • Carlos Jaramillo


The Neogene sedimentary fill of the Cocinetas Basin in northern Colombia preserves a rich record of marine invertebrates and can be analyzed in the context of a high-resolution stratigraphy and excellent chronostratigraphy. Molluscan fossils are highly diverse and often well preserved, offering a window into the rapidly changing paleoenvironments and biogeography of northern South America during parts of the Early to Middle Miocene and latest Pliocene to Pleistocene. Before the evolutionary and biogeographic implications of these fossils can be understood, however, their associated depositional environments and geologic ages must be determined. Here, we present preliminary results from paleoenvironmental, biostratigraphic, and strontium isotope chronostratigraphic analyses of sediments and fossils from the Uitpa, Jimol, Castilletes, and Ware formations found in Cocinetas Basin. The basal unit in the Neogene succession, the Uitpa Formation, comprises mudstones redeposited sandstones and molluscs typical of bathyal to outer shelf environments at its base. It is a shallowing-up sequence and is conformable with the overlying Jimol Formation, which comprises coarse-grained lithic calcarenite, coquina, and mudstone that represent a regressive–transgressive–regressive sequence. This sequence includes foreshore and transition zone through lower inner shelf environments, but generally poorly preserved invertebrate assemblages. The conformably overlying Castilletes Formation contains a varied suite of depositional environments with better-developed shell beds and thicker successions of intervening siltstone. A significant unconformity exists between the Castilletes Formation and the overlying Ware Formation, which represents a deltaic to coastal shoreface deposition environment, rich in shallow marine molluscs from a variety of ecotopes. Biostratigraphic assessment and strontium isotopic results from the Jimol and Castilletes formations indicate that these units contain fossils of latest Early Miocene through Middle Miocene age, while those of the Ware are approximately Late Pliocene in age. These results help to place the shallow marine assemblages of Cocinetas Basin into a wider geologic context that aids our understanding of how these faunas relate to the broader evolutionary and biogeographic history of the southern Caribbean during the Neogene. Additionally, the isotope dating and paleoecology of this fauna help to place co-occurring terrestrial and aquatic vertebrate assemblages into a local paleoenvironmental and chronostratigraphic framework.


Jimol Formation Castilletes Formation Ware Formation Mollusca Guajira Peninsula Colombia 

Supplementary material

13358_2015_74_MOESM1_ESM.xlsx (72 kb)
Supplementary material 1 (XLSX 71 kb)
13358_2015_74_MOESM2_ESM.xlsx (65 kb)
Supplementary material 2 (XLSX 65 kb)


  1. Abbott, R. T. (1974). American seashells: the marine Mollusca of the Atlantic and Pacific coasts of North America (second addition). New York: Van Nostrand Reinhold.Google Scholar
  2. Becker, L. E., & Dusenbury, A. N. (1958). Mio-oligocene (Aquitanian) foraminifera from the Goajira Peninsula, Colombia. Cushman Foundation for Foraminiferal Research Special Publication, 40, 4–48.Google Scholar
  3. Brett, C. E. (1995). Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios, 10, 597–616.CrossRefGoogle Scholar
  4. Brett, C. E., Allison, P. A., & Hendy, A. J. (2011). Comparative taphonomy and sedimentology of small-scale mixed carbonate/siliciclastic cycles: Synopsis of Phanerozoic examples. In P. A. Allison & D. J. Bottjer (Eds.), Taphonomy (pp. 107–198). Netherlands: Springer.Google Scholar
  5. Bürgl, H. (1960). Geología de la Península de La Guajira: Servicio Geológico Nacional de Colombia. Boletín de Geología, 6(1–3), 129–168.Google Scholar
  6. Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F., & Otto, J. B. (1982). Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10(10), 516–519.CrossRefGoogle Scholar
  7. Coan, E. V., & Valentich-Scott, P. (2012). Bivalve seashells of tropical west America. Marine bivalve mollusks from Baja California to Peru. Santa Barbara Museum of Natural History Monographs, 6, 1–1258.Google Scholar
  8. Flynn, J. J., & Swisher, C. C, I. I. I. (1995). Cenozoic South American land mammal ages: correlation and global geochronologies. SEPM Special Publication, 54, 317–334.Google Scholar
  9. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The geologic time scale 2012. Boston: Elsevier.Google Scholar
  10. Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the Earth’s orbit: pacemaker of the ice ages. Science, 194(4270), 1121–1132.CrossRefGoogle Scholar
  11. Hendy, A. J. W., Kamp, P. J. J., & Vonk, A. (2006). Cool-water shell bed taphofacies from Miocene–Pliocene shelf sequences in New Zealand: utility in sequence stratigraphic analysis. In H. M. Pedley & G. Carannate (Eds.), Cool-water carbonates: Depositional systems and paleoenvironmental control (pp. 285–307). London: Geological Society of London Special Publication 255.Google Scholar
  12. Hodson, F. (1926). Venezuelan and Caribbean Turritellas. Bulletins of American Paleontology, 11(45), 3–220.Google Scholar
  13. Hodson, F., & Hodson, H. K. (1931a). Some Venezuelan mollusks: Part 2. Bulletins of American Paleontology, 16(60), 95–132.Google Scholar
  14. Hodson, F., & Hodson, H. K. (1931b). Some Venezuelan mollusks. Bulletins of American Paleontology, 16(60), 1–94.Google Scholar
  15. Hodson, F., Hodson, H. K., & Harris, G. D. (1927). Some Venezuelan and Caribbean Mollusks. Bulletins of American Paleontology, 13(49), 1–160.Google Scholar
  16. Howarth, R. J., & McArthur, J. M. (1997). Statistics for strontium isotope stratigraphy. A robust LOWESS fit to the marine Sr-isotope curve for 0–206 Ma, with look-up table for the derivation of numerical age. Journal of Geology, 105(4), 441–456.CrossRefGoogle Scholar
  17. Johnson, K. G., Sánchez-Villagra, M. R., & Aguilera, O. (2009). The oligocene/miocene transition on coral reefs in the Falcón Basin (NW Venezuela). Palaios, 24, 59–69.CrossRefGoogle Scholar
  18. Jung, P. (1965). Miocene mollusca from the Paraguaná Peninsula, Venezuela. Bulletins of American Paleontology, 49, 389–652.Google Scholar
  19. Jung, P. (1969). Miocene and pliocene mollusks from Trinidad. Bulletins of American Paleontology, 55(246), 293–657.Google Scholar
  20. Keen, A. M. (1971). Sea shells of tropical west America: marine mollusks from Baja California to Peru. Stanford: Stanford University Press.Google Scholar
  21. Kidwell, S. M. (1989). Stratigraphic condensation of marine transgressive records: origin of major shell deposits in the miocene of Maryland. Journal of Geology, 97, 1–24.CrossRefGoogle Scholar
  22. Kidwell, S. M., & Bosence, D. W. J. (1991). Taphonomy and time-averaging of marine shelly faunas. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: releasing the data locked in the fossil record (pp. 115–209). New York: Plenum Press.CrossRefGoogle Scholar
  23. Kirby, M. X., Jones, D. S., & Ávila, S. P. (2007). Neogene shallow-marine paleoenvironments and preliminary strontium isotope chronostratigraphy of Santa Maria Island, Azores. In S. P. Ávila and A. M. De Frias Martin (Eds.), Proceedings of the 1st “Atlantic Islands Neogene” International Congress, Ponta Delgada, 12–14 June 2006 (Açoreana, Suplemento, 5, pp. 112–115).Google Scholar
  24. Kirby, M. X., Jones, D. S., & MacFadden, B. J. (2008). Lower miocene stratigraphy along the Panama Canal and its bearing on the Central American Peninsula. PLoS One,. doi:10.1371/journal.pone.0002791.Google Scholar
  25. Landau, B., & Marques da Silva, C. (2010). Early Pliocene gastropods of Cubagua, Venezuela: taxonomy, paleobiogeography and ecostratigraphy. Palaeontos, 19, 1–221.Google Scholar
  26. Macellari, C. E. (1995). Cenozoic sedimentation and tectonics of the southwestern Caribbean pull-apart basin, Venezuela and Colombia. In A. J. Tankard, R. Suarez Soruco, & H. J. Welsink (Eds.), Petroleum basins of South America (Vol. 62, pp. 757–780). Tulsa: American Association of Petroleum Geologists.Google Scholar
  27. Maury, C. J. (1912). A contribution to the paleontology of Trinidad. Journal of the Academy of Natural Sciences of Philadelphia, 15, 1–112.Google Scholar
  28. Maury, C. J. (1917). Santo Domingo type sections and fossils. Bulletins of American Paleontology, 5(30), 1–43.Google Scholar
  29. McArthur, J. M. (1994). Recent trends in strontium isotope stratigraphy. Terra Nova, 6(4), 331–358.CrossRefGoogle Scholar
  30. McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W., & Mattey, D. (2000). Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Science Letters, 179(2), 269–285.CrossRefGoogle Scholar
  31. McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS Version 3. Best-fit line to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, 109(2), 155–169.CrossRefGoogle Scholar
  32. McArthur, J. M., Janssen, N. M. M., Reboulet, S., Leng, M. J., Thirlwall, M. F., & Van de Schootbrugge, B. (2007). Paleotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): the Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeography, Palaeoclimatology, Palaeoecology, 248(3–4), 391–430.CrossRefGoogle Scholar
  33. Moreno, J.F., Hendy, A.J.W., Quiroz, L., Hoyos, N., Jones, D.S., Zapata, V., Zapata, S., Ballen, G.A., Cadena, E., Cárdenas, A.L., Carrillo-Briceño, J.D., Carrillo, J.D., Delgado-Sierra, D., Escobar, J., Martínez, J.I., Martínez, C., Montes, C., Moreno, J., Pérez, N., Sánchez, R., Suárez, C., Vallejo-Pareja, M.C., & Jaramillo, C. (2015). Revised stratigraphy of neogene strata in the Cocinetas Basin, La Guajira, Colombia. Swiss J Paleontol. doi:10.1007/s13358-015-0071-4.
  34. Muessig, K. W. (1984). Structure and Cenozoic tectonics of the Falcón Basin, Venezuela, and adjacent areas. Geological Society of America Memoirs, 162, 217–230.Google Scholar
  35. Olsson, A. A. (1922). The miocene of northern Costa Rica with notes on its general stratigraphic relations. Bulletins of American Paleontology, 9(39), 173–340.Google Scholar
  36. Olsson, A. A. (1928). Contributions to the tertiary paleontology of Northern Peru: Part 1. Bulletins of American Paleontology, 14(52), 47–164.Google Scholar
  37. Olsson, A. A. (1930). Contributions to the tertiary paleontology of Northern Peru: Part 3, Eocene Mollusca. Bulletins of American Paleontology, 17(62), 1–164.Google Scholar
  38. Olsson, A. A. (1931). Contributions to the tertiary paleontology of Northern Peru: Part 4, The Peruvian Oligocene. Bulletins of American Paleontology, 17(63), 13–33.Google Scholar
  39. Olsson, A. A. (1932). Contributions to the tertiary paleontology of Northern Peru: Part 5, Miocene Mollusca. Bulletins of American Paleontology, 19(68), 1–272.Google Scholar
  40. Olsson, A. A., & Richards, H. G. (1961). Some tertiary fossils from the Goajira Peninsula. Philadelphia: Academy of Natural Sciences. Notulae Naturae, No. 350.Google Scholar
  41. Peterman, Z. E., Hedge, C. E., & Tourtelot, H. A. (1970). Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochimica et Cosmochimica Acta, 34(1), 105–120.CrossRefGoogle Scholar
  42. Pin, C., & Bassin, C. (1992). Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials. Analytica Chimica Acta, 269(2), 249–255.CrossRefGoogle Scholar
  43. Pindell, J. L., & Barrettt, S. F. (1990). Geological evolution of the Caribbean region: a plate tectonic perspective. In G. Dengo & J. Case (Eds.), The Caribbean region (Vol. Geology of North America, H, pp. 405–432). Boulder: Geological Society of America.Google Scholar
  44. Quiroz, L., & Jaramillo, C. (2010). Stratigraphy and sedimentary environments of miocene shallow to marginal marine deposits in the Urumaco Trough, Falcon Basin, western Venezuela. In M. Sánchez-Villagra, O. Aguilera, & A. A. Carlini (Eds.), Urumaco and Venezuelan paleontology: the fossil record of the Northern Neotropics (pp. 153–172). Bloomington: Indiana University Press.Google Scholar
  45. Renz, O. (1960). Geología de la Parte Sureste de la Peninsula de la Guajira (Republica de Colombia). III Congress geology on Venezuela, Mem., tomo I, pp. 317–347.Google Scholar
  46. Rollins, J. F. (1960). Stratigraphy and structure of the Goajira Peninsula, northwestern Venezuela, and northeastern Colombia. Unpublished PhD thesis, University of Nebraska, pp. 1–152.Google Scholar
  47. Rollins, J. F. (1965). Stratigraphy and structure of the Goajira Peninsula, northwestern Venezuela, and northeastern Colombia. University of Nebraska Studies (new series) No. 30, pp. 1–102.Google Scholar
  48. Rosenberg, G. (2009). Malacolog 4.1.1: a database of Western Atlantic Marine Mollusca, updated 20 October 2009. Accessed 17 December 2013.
  49. Saunders, J. B., Jung, P., & Biju-Duval, B. (1986). Neogene paleontology in the Northern Dominican Republic: 1. Field surveys, lithology, environment, and age. Bulletins of American Paleontology, 89(323), 1–79.Google Scholar
  50. Shevenell, A. E., Kennett, J. P., & Lea, D. W. (2004). Middle Miocene southern ocean cooling and Antarctic cryosphere expansion. Science, 305, 1766–1770.CrossRefGoogle Scholar
  51. Thomas, D.J. (1972). The tertiary geology and systematic paleontology (Phylym Mollusca) of the Guajira Peninsula, Colombia, South America. PhD thesis, State University of New York, Binghamton, pp. 1–147.Google Scholar
  52. Todd, J. A., 2001, Identification and taxonomic consistency. In Neogene marine biota of tropical America, updated 28 March 2001. Accessed December 2011.
  53. Vokes, H. E., & Vokes, E. H. (1968). Variation in the genus Orthaulax (Mollusca: Gastropoda). Tulane Studies in Geology, 6(1), 71–79.Google Scholar
  54. Waller, T. R. (2011). Neogene paleontology of the northern Dominican Republic. 24. Propeamussiidae and Pectinidae (Mollusca: Bivalvia: Pectinoidea) of the Cibao Valley. Bulletins of American Paleontology, 381, 1–195.Google Scholar
  55. Weisbord, N. E. (1962). Late Cenozoic gastropods from northern Venezuela. Bulletins of American Paleontology, 42(193), 1–672.Google Scholar
  56. Weisbord, N. E. (1964a). Late Cenozoic pelecypods from northern Venezuela. Bulletins of American Paleontology, 45(204), 1–564.Google Scholar
  57. Weisbord, N. E. (1964b). Late Cenozoic scaphopods and serpulid polychaetes from northern Venezuela. Bulletins of American Paleontology, 47(214), 111–199.Google Scholar
  58. Wesselingh, F. P. (2006). Molluscs from the Miocene Pebas Formation of Peruvian and Colombian Amazonia. Scripta Geologica, 133, 19–290.Google Scholar
  59. Wesselingh, F. P., Guerrero, J., Räsänen, M. E., Romero Pitmann, L., & Vonhof, H. B. (2006a). Landscape evolution and depositional processes in the Miocene Amazonian Pebas lake/wetland system: evidence from exploratory boreholes in Peru. Scripta Geologica, 133, 323–361.Google Scholar
  60. Wesselingh, F. P., Hoorn, M. C., Guerrero, J., Räsänen, M., Romero, Pittmann L., & Salo, J. (2006b). The stratigraphy and regional structure of Miocene deposits in western Amazonia (Peru, Colombia and Brazil), with implications for Late Neogene landscape evolution. Scripta Geologica, 133, 291–322.Google Scholar
  61. Woodring, W. P. (1925). Miocene molluscs from Bowden, Jamaica. Part 1: Pelecypods and scaphopods. Carnegie Institute, Washington Publication, 366, 1–222.Google Scholar
  62. Woodring, W. P. (1928). Miocene molluscs from Bowden, Jamaica. Part 2: Gastropods and discussion of results. Carnegie Institute, Washington Publication, 368, 1–564.Google Scholar
  63. Woodring, W. P. (1957). Geology and paleontology of Canal Zone and adjoining parts of Panama; geology and description of tertiary mollusks. U.S. Geological Survey Professional Paper 306 A, pp. 1–145.Google Scholar
  64. Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., & Flower, B. P. (2001). Climate response to orbital forcing across the oligocene–miocene boundary. Science, 292(5515), 274–278.CrossRefGoogle Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2015

Authors and Affiliations

  • Austin J. W. Hendy
    • 1
    • 2
  • Douglas S. Jones
    • 2
  • Federico Moreno
    • 3
    • 4
    • 5
  • Vladimir Zapata
    • 3
    • 6
  • Carlos Jaramillo
    • 3
  1. 1.Natural History Museum of Los Angeles CountyLos AngelesUSA
  2. 2.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  3. 3.Smithsonian Tropical Research InstitutePanamaUSA
  4. 4.University of RochesterRochesterUSA
  5. 5.Corporación Geológica ARESBogotáColombia
  6. 6.Ecopetrol S.A.BogotáColombia

Personalised recommendations