Swiss Journal of Palaeontology

, Volume 132, Issue 1, pp 45–68

Ariid sea catfishes from the coeval Pirabas (Northeastern Brazil), Cantaure, Castillo (Northwestern Venezuela), and Castilletes (North Colombia) formations (early Miocene), with description of three new species

  • Orangel Antonio Aguilera
  • Heloisa Moraes-Santos
  • Sue Costa
  • Fumio Ohe
  • Carlos Jaramillo
  • Afonso Nogueira


Ariidae catfish are described from the early Miocene Pirabas Formation in northeastern Brazil, Cantaure and Castillo formations in northwestern Venezuela, and Castilletes Formation in North Colombia. A skull from the Pirabas Formation is described as Cathoropsgoeldii, n. sp. and an otolith is identified as Cathorops sp. The otoliths from Cantaure, Castillo and Castilletes formations are described as Cantarius nolfi n. sp. and Bagreprotocaribbeanus n. sp. These coeval lithostratigraphic units reflect the Proto-Caribbean conditions and the shallow water tropical palaeoenvironment during the Miocene, particularly associated with marine coastal lagoon and estuarine influence.


Ariidae Catfish Miocene Caribbean South America 


  1. Aguilera, O. (2010). Peces fósiles del Caribe de Venezuela. In GeoBio Consultores (Ed.), Washington, DC: Gorham Printing.Google Scholar
  2. Aguilera, O., & Lundberg, J. (2010). Venezuelan Caribbean and Orinocoan Neogene fish. In M. Sánchez-Villagra, O. Aguilera & F. Carlini (Eds.), Urumaco and Venezuelan paleontology (pp. 129–152). Indiana: Indiana Press University.Google Scholar
  3. Aguilera, O., & Marceniuk, A. (2012). Aspistor verumquadriscutis, a new fossil species of sea catfishes (Siluriformes; Ariidae) from the upper Miocene of Venezuela. Swiss Journal of Palaeontology, 131(2), 265–274.CrossRefGoogle Scholar
  4. Aguilera, O., & Páes, E. (2012). The Pirabas Formation (Early Miocene from Brazil) and the Tropical Western Central Atlantic subprovince. Boletim do Museu Paraense Emilio Goeldi—Ciências Naturais, 7(1), 29–45.Google Scholar
  5. Aguilera, O., Ramos, M. I., Paes, E., Costa, S., & Sánchez-Villagra, M. (2011). The Neogene Tropical America fish assemblage and the palaeobiogeography of the Caribbean region. Swiss Journal of Palaeontology, 130(2), 217–240.CrossRefGoogle Scholar
  6. Aguilera, O., & Rodrigues de Aguilera, D. (1999). Bathymetric of Neogene and Quaternary Teleostean fishes from the coast of Panamá and Costa Rica. Bulletins of American Paleontology, 357, 251–269.Google Scholar
  7. Aguilera, O., & Rodrigues de Aguilera, D. (2001). An exceptional coastal upwelling fish assemblage in the Caribbean Neogene. Journal of Paleontology, 75(3), 732–742.CrossRefGoogle Scholar
  8. Aguilera, O., & Rodrigues de Aguilera, D. (2004). Amphi-American neogene sea catfishes (Siluriformes, Ariidae) from northern South America. Special Paper in Palaeontology, 71, 29–48.Google Scholar
  9. Aguilera, O., Rodrigues de Aguilera, D., Vega, F. J., & Sánchez-Villagra, M. (2010). Mesozoic and Cenozoic decapod crustaceans from Venezuela and related ichnofossils. In M. Sánchez-Villagra, Aguilera, O., & Carlini, F. (Eds.), Urumaco and Venzuelan Paleontology: The fossil record of the Northern Neotropics (pp. 103–128). Indiana: Indiana Press University.Google Scholar
  10. Arratia, G. (2003). Catfish head skeleton: an overview. In G. Arratia, B. G. Kapoor, M. Chardon & R. Diogo (Eds.), Catfishes (pp. 490–522). New Hampshire: Science Publishers, Inc. Enfield.Google Scholar
  11. Arratia, G., & Gayet, M. (1995). Sensory canals and related bones of tertiary siluriform crania from Bolivia and North America and comparison with recent forms. Journal of Vertebrate Paleontology, 15, 482–505.CrossRefGoogle Scholar
  12. Bachmann, R. (2001). The Caribbean plate and the question of its formation. Institute of Geology, University of Mining and Technology Freiberg, Department of Tectonophysics (17 p). http://www.fiu/orgs/caribgeol.
  13. Beardsley, R., Candela, J., Limeburner, R., Gleyer, W., Lentz, S. J., Castro, B. M., et al. (1995). The Me tide on the Amazon shelf. Journal of Geophysical Research, 100, 2283–2319.CrossRefGoogle Scholar
  14. Berg, L. S. (1940). Classification of fishes, both recent and fossil. Travaux de l’Institut Zoologique de l’Academie des Sciences de l’URSS (Vol. 5, pp. 87–517) (English translation, Ann Arbor, Michigan, 1947).Google Scholar
  15. Betancur-R., R. (2009). Systematics and evolutionary history of sea catfishes (Siluriformes: Ariidae). Thesis PhD. Auburn University, Alabama.Google Scholar
  16. Betancur-R., R., Acero P. A., Bermingham, E., & Cooke, R. (2007). Systematics and biogeography of New World sea catfishes (Siluriformes: Ariidae) as inferred from mitochondrial, nuclear and morphological evidence. Molecular Phylogenetics and Evolution, 45, 339–357.Google Scholar
  17. Betancur-R., R., Orti, G., Stein, A., Marceniuk, A., & Pyron, R. (2012). Apparent signal of competition diversification after ecological transitions from marine to freshwater habits. Ecology Letters. 10.1111/j.1461-0248.2012.01802-x
  18. Beurlen, K. (1958a). Contribuição á paleontología do estado do Pará. Crustáceos decápodes da Formação Pirabas. Boletim do Museu Paraense Emilio Goeldi, Nova Série Geológica, 5, 1–48.Google Scholar
  19. Beurlen, K. (1958b). Contribuição á paleontología do estado do Pará. Um balanomorfo da Formação Pirabas. Boletim do Museu Paraense Emilio Goeldi, Nova Série Geológica, 5, 1–48.Google Scholar
  20. Bleeker, P. (1862–1863). Atlas Ichthyologique des Indes Orientales Néêrlandaises, publié sous les auspices du Gouvernement Colonial Néêrlandais. Tome II. Siluroïdes, Chacoïdes et Hétérobranchoïdes, Amsterdam (pls. 49–101).Google Scholar
  21. Blow, W. H. (1969). Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In P. Bronnimann & H. H. Renz (Eds.), Proceedings of the First International Conference on Planktonic Microfossils, Geneva 1967 (Vol. 1, pp. 199–422). Leiden: E.J. Brill.Google Scholar
  22. Bogan, S., & Agnolin, F. L. (2011). Descripción de una nueva especie de bagre marino fóssil (Teleostei, Siluriformes, Ariidae) del Mioceno de la Provincia de Río Negro. Argentina. Papéis Avulsos de Zoología, 51(25), 373–382.Google Scholar
  23. Bürgl, H. (1960). Geología de la Península de La Guajira: Servicio Geológico Nacional de Colombia. Boletín de Geología, 6(1–3), 129–168.Google Scholar
  24. Carter, R. M. (1998). Two models: global sea-level change and sequence stratigraphic architecture. Sedimentary Geology, 122, 23–36.CrossRefGoogle Scholar
  25. Cloquet, H. (1816). Dictionnaire des Sciences Naturelles, Pisces accounts (Vol. 4, pp. 52–53). Paris: Imprint Le Normant.Google Scholar
  26. Coates, A., Mcneill, D. F., Aaubry, M.-P., Berggren, W., & Collins, A. L. S. (2005). An introduction to the geology of the Bocas del Toro Archipelago, Panamá. Caribbean Journal of Science, 41(3), 374–391.Google Scholar
  27. Costa, S. (2011). Ictiólitos da Formação Pirabas, Mioceno do Pará, Brasil, e suas implicações paleoecológicas. Tese de Doutorado. Universidade Federal do Pará, Instituto de Geociências.Google Scholar
  28. Díaz de Gamero, M. L. (1974). Microfauna y edad de la Formación Cantaure, Península de Paraguaná, Venezuela. Boletín Informativo de la Asociación Venezolana de Geología, Minería y Petróleo, 17, 41–47.Google Scholar
  29. Díaz de Gamero, M. L. (1996). The changing course of the Orinoco river during the Neogene: a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 385–402.CrossRefGoogle Scholar
  30. Diretoria de Hidrografia e Navegação-DHN. (2011). Centro de Hidrografia da Marinha do Brasil, Banco Nacional de dados Oceanográficos. Accessed 24 Aug 2011.
  31. Eschmeyer, W. N. (Ed.). (2013). Catalog of Fishes. San Francisco: California Academy of Sciences ( Electronic version accessed 03 February 2013.
  32. Fernandes, J. M. G. (1984). Paleoecology of Pirabas Formation, Pará state. In 33° Congresso Brasileiro de Geologia. Anais da Academia Brasileira de Ciências SBG, 1, 330–340.Google Scholar
  33. Fernandes, J. M. G. (1988). Biostratigraphy of Pirabas Formation, Pará state. In 35° Congresso Brasileiro de Geologia. Anais da Academia Brasileira de Ciências, SBG, 1, 2376–2382.Google Scholar
  34. Fernandes, M. J. G., & Távora, V. A. (1990). Estudo dos Foraminíferos da Formação Pirabas procedentes do furo CB-UFPa-P1 (85), município de Capanema, estado do Pará. In 36° Congresso Brasileiro de Geologia. Anais da Academia Brasileira de Ciências, SBG, 1, 470–475.Google Scholar
  35. Ferraris, C. J. (2007). Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa, 1418, 1–628.Google Scholar
  36. Ferreira, C. S., Macedo, A. C. M., & Assis, J. F. P. (1978). A Formação Pirabas no estado do Pará. Novo registro de subsuperfície: Belém (Furo 4be-01-Pa, Cprm). Anais da Academia Brasileira de Ciências, 50(3), 427–427.Google Scholar
  37. Ferreira-Penna, D. S. (1876). Breves notícias sobre os sambaquís do Pará. Arquivo do Museu Nacional, 1, 85–89.Google Scholar
  38. Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology, 37, 619–622.CrossRefGoogle Scholar
  39. Frizzell, D. L. (1965). Otolith of new fish (Vorhisia vulpes, n. gen., n. sp. Siluroidei ?) fom the upper Cretaceous of South Dakota. Copeia, 1965(2), 178–181.CrossRefGoogle Scholar
  40. Gayet, M. & Meunier, F. J. (2003). Palaeontology and Palaeogeography of catfishes. In G. Arratia, B. G. Kapoor, M. Chardon & R. Diogo (Eds.), Catfishes (pp. 490–522). New Hampshire: Science Publishers, Inc. Enfield.Google Scholar
  41. Gill, T. N. (1863). Descriptive enumeration of a collection of fishes from the western coast of Central America, presented to the Smithsonian Institution by Captain John M. Dow. Proceedings of the Academy of Natural Sciences of Philadelphia, 15, 162–174.Google Scholar
  42. Góes, A. M., Rossetti, D., Nogueira, A., & Toledo, P. M. (1990). Modelo deposicional preliminar da Formação Pirabas no Nordeste do Estado do Pará. Boletim do Museu Paraense Emilio Goeldi, Ciências da Terra, 2, 3–15.Google Scholar
  43. Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112(7), 1091–1105.CrossRefGoogle Scholar
  44. Hoorn, C., Guerrero, J., Sarmiento, G. A., & Lorente, M. A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237–240.CrossRefGoogle Scholar
  45. Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., et al. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.CrossRefGoogle Scholar
  46. Huddleston, R. W., & Savoie, K. M. (1983). Teleostean otoliths from the Late Cretaceous (Maestrichtian age) Severn Formation of Maryland. Procceding of the Biological Society of Washington, 96(4), 658–663.Google Scholar
  47. Hunter, V. F., & Bartok, P. (1974). The age and correlation of the tertiary sediments of the Paraguaná Peninsula, Venezuela. Boletín Informativo de la Asociación Venezolana de Geología, Minería y Petróleo, 17, 143–154.Google Scholar
  48. Irving, E. (1972). Mapa Geológico de la Península de la Guajira (Compilación). Instituto Nacional de Investigaciones Geológicas-Mineras, U.S. Geological Survey. Mapa Geológico.Google Scholar
  49. Iturralde-Vinent. M. A. (2004–2005). La Paleogeografía del Caribe y sus implicaciones para la biogeografía histórica. Revista del Jardín Botánico Nacional, 25–26, 49–78.Google Scholar
  50. Iturralde-Vinent, M. A., & MacPhee, R. D. E. (1999). Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238, 1–95, 22 figs, 2 app.Google Scholar
  51. Jackson, J., Jung, P., Coates, A., & Collins, L. (1993). Diversity and extinction of Tropical American mollusk and emergence of the Isthmus of Panamá. Science, 260, 1624–1626.CrossRefGoogle Scholar
  52. Johns, W. E., Lee, T. N., Beardsley, R. C., Candela, J., Limeburner, R., & Castro, B. (1998). Annual cycle and variability of the North Brazil Current. Journal of Physical Oceanography, 28(1), 103–128.CrossRefGoogle Scholar
  53. Johns, W. E., Tamara, L., Townsend, T. L., Fratantoni, D. M., & Wilson, W. D. (2002). On the Atlantic inflow to the Caribbean Sea. Deep-Sea Research, 1(49), 211–243.Google Scholar
  54. Johnson, K. G., Budd, A. F., & Jackson, J. B. C. (2008). Coral reef development was independent of coral diversity in the Caribbean over 28 million years. Science, 319, 1521–1522.CrossRefGoogle Scholar
  55. Johnson, K., Sánchez-Villagra, M., & Aguilera, O. (2009). The Oligocene–Miocene transition on coral reefs in the Falcón basin (NW Venezuela). Palaios, 24, 59–69.CrossRefGoogle Scholar
  56. Jordan, D. S., & Gilbert, C. H. (1882). A review of the siluroid fishes found on the Pacific coast of tropical America, with descriptions of three new species. Bulletin of the United States Fish Commission, 2, 34–54.Google Scholar
  57. Jung, P. (1965). Miocene mollusca from the Paraguaná Peninsula, Venezuela. Bulletins of American Paleontology, 49, 389–652.Google Scholar
  58. Klaus, J. S., McNeill, D. F., Budd, A. F., & Coates, A. G. (2011). Neogene reef coral assemblages of the Bocas del Toro region, Panamá: the rise of Acropora palmata. Coral Reefs. doi:10.1007/s00338-011-0835-2
  59. Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintseva, S., & Scotese, C. R. (2008). Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Research, 20, 211–226.CrossRefGoogle Scholar
  60. Landau, B., Vermeij, G., & Marques da Silva, C. (2008). Southern Caribbean Neogene palaeobiogeography revisited. New data from the Pliocene of Cubagua, Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 257, 445–461.CrossRefGoogle Scholar
  61. Landini, W., Bianucci, G., Carnevale, G., Ragaini, L., Sorbini, C., Valleri, G., et al. (2002). Late Pliocene fossils of Ecuador and their role in the development of the Panamic bioprovince after the rising of Central American Isthmus. Canadian Journal of Earth Sciences, 39, 27–34.CrossRefGoogle Scholar
  62. Latrubesse, E. M., Cozzuol, M., Silva-Caminha, S. A. F., Rigsby, C. A., Absy, M. L., & Jaramillo, C. A. (2010). The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon river system. Earth-Science Reviews, 99, 99–124.CrossRefGoogle Scholar
  63. Lorente, M. A. (1997). Castillo Formation. In Committee for stratigraphy and nomenclature. Stratigraphical Lexicon of Venezuela.
  64. Marceniuk, A. P. (2007). Description of Cathorops manglarensis, a new species from the Colombian Pacific, with redescription of Cathorops multiradiatus (Siluriformes; Ariidae). Zootaxa, 1529, 33–48.Google Scholar
  65. Marceniuk, A. P., & Menezes, N. A. (2007). Systematics of the family Ariidae (Ostariophysi, Siluriformes), with a redefinition of the genera. Zootaxa, 1416, 1–126.Google Scholar
  66. Marceniuk, A. P., & Betancur-R., R. (2008). Revision of the species of the genus Cathorops (Siluriformes: Ariidae) from Mesoamerica and the Central American Caribbean, with description of three new species. Neotropical Ichthyology, 6(1), 25–44.Google Scholar
  67. Marceniuk, A. P., Betancur-R, R., Acero, A., & Muriel-Cunha, J. (2012a). Review of the genus Cathorops (Siluriformes: Ariidae) from the Caribbean and Atlantic South America, with description of a new species. Copeia, 1, 77–97.CrossRefGoogle Scholar
  68. Marceniuk, A. P., Menezes, N. A., & Britto, M. R. (2012b). Phylogenetic analysis of the family Ariidae (Ostariophysi, Siluriformes), with a hypothesis on the monophyly and relationships of the genera. Zoological Journal of the Linnean Society, 165, 534–669.CrossRefGoogle Scholar
  69. Martinod, J., Husson, L., Roperch, P., Guillaume, B., & Espurt, N. (2010). Horizontal subduction zones, convergence velocity and the building of the Andes. Earth and Planetary Science Letters, 299, 299–309.CrossRefGoogle Scholar
  70. Maury, C. J. (1925). Fósseis terciários do Brasil com descrição de novas formas Cretáceas. Serviço Geológico e Mineralógico do Brasil, 4, 1–665.Google Scholar
  71. Mitchill, S. L. (1815). The fishes of New York described and arranged. Transactions of the Literary and Philosophical Society of New York, 1, 355–492. (pls. 1–6).Google Scholar
  72. Mo, T. (1991). Anatomy, relationships and systematics of the Bagridae (Teleostei: Siluroidei) with a hypothesis of siluroid phylogeny. Theses Zoologicae (Vol. 17). Koenigstein: Koeltz. (63 figs).Google Scholar
  73. Mohriak, W. V. (2003). Bacias sedimentares da margem continental Brasileira. In L. A. Bizzi, C. Schobbenhaus, R. M. Vidotti, & J. H. Gonçalves (Eds.), Geologia Tectônica e Recursos Minerais do Brasil. Brasília: CPRM.Google Scholar
  74. Monsch, K. A. (1998). Miocene fish fauna from northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeography, Palaeoclimatology and Palaeoecology, 14, 31–50.CrossRefGoogle Scholar
  75. Nolf, D. (1976). Les otolithes dês Téléostéens néogénes de Trinidad. Eclogae Geologicae Helvetiae, 69, 703–742.Google Scholar
  76. Nolf, D., & Aguilera, O. (1998). Fish otoliths from the Cantaure Formation (early Miocene of Venezuela). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 68, 237–262.Google Scholar
  77. Nolf, D., & Stringer, G. L. (1992). Neogene paleontology in the northern Dominican Republic: Otoliths of teleostean fishes. Bulletin of American Paleontology, 102, 41–81.Google Scholar
  78. O′Dea, A., Jackson, J., Fortunato, H., Smith, T., D′Croz, L., Johnson, K., & Todd, J. A. (2007). Environmental change preceded Caribbean extinction by 2 million years. PNAS, 104, 5263–5704.Google Scholar
  79. Ohe, F. (2006). Skulls and otoliths of eleven sea catfishes (Family Ariidae) from Malaysia and one species related to them from the East China Sea. Natural Environmental Science Research, 19, 11–28.Google Scholar
  80. Paula-Couto, C. (1967). Contribuição à paleontologia do estado de Pará. Um sirênio na formação Pirabas. Atas do 1° Simpósio sobre a Biota Amazônica, 1, 345–357.Google Scholar
  81. Petri, S. (1954). Foraminíferos fósseis da Bacia de Marajó. Boletim da Faculdade de Filosofia. Ciências e Letras da Universidade de São Paulo (Geologia), 134, 21–38.Google Scholar
  82. Petri, S. (1957). Foraminíferos Miocênicos da Formação Pirabas. Boletim da Faculdade de Filosofia Ciências e Letras da Universidade de São Paulo (Geologia), 216, 1–172.Google Scholar
  83. Pindell, J., Kennan, L., Maresch, W. V., Walter, V., Stanek, K.-P., Draper, G., et al. (2005). Plate-kinematics and crustal dynamics of circum-Caribbean arc continent interactions: tectonic controls on basin development in Proto-Caribbean margins. Geological Society of America Special Paper, 394, 7–52.Google Scholar
  84. Renz, O. (1960). Geología de la parte sureste de la Península de la Guajira (República de Venezuela). III Congreso Geológico Venezolano, Caracas, 1959. Memorias del Boletín de Geología, 3(1), 317–347.Google Scholar
  85. Rey, O. (1996). Estratigrafía de la Península de Paraguaná, Venezuela. Revista de la Facultad de Ingeniería, 11, 35–45.Google Scholar
  86. Rollins, J. (1965). Stratigraphy and structure of the Guajira Peninsula, northwestern Venezuela and northeastern Colombia. University of Nebraska Studies, New Series, 30, 1–1102.Google Scholar
  87. Rossetti, D. (2001). Late Cenozoic sedimentary evolution in northeastern Pará, Brazil, within the context of sea level changes. Journal of South American Earth Sciences, 14, 77–89.CrossRefGoogle Scholar
  88. Rossetti, D. (2006). Evolução sedimentar miocênica nos estados do Pará e Maranhão. Revista do Instituto de Geociências, USP Série Científica, 6(2), 7–18.Google Scholar
  89. Rossetti, D., & Góes, A. (2004). Geologia. In D. Rossetti & A. Góes (Eds.), O Neogeno da Amazônia Oriental (pp. 13–52). Belém: Museu Paraense Emilio Goeldi.Google Scholar
  90. Royero, R. (1987). Morfología de la aleta dorsal en los bagres (Teleostei: Siluriformes), con especial referencia a las familias americanas. Trabajo especial de grado. Caracas: Universidad Central de Venezuela, Facultad de Ciencias.Google Scholar
  91. Sánchez-Villagra, M. R., & Clack, J. A. (Eds.) (2004). Fossils of the Miocene Castillo Formation, Venezuela: Contributions in Neotropical Palaeontology. Special Papers in Palaeontology (Vol. 71, 112 pp.).Google Scholar
  92. Sánchez-Villagra, M. R., Burnham, R. J., Campbell, D. C., Feldmann, R. M., Gaffney, E. S., Kay, R. F., et al. (2000). A new near-shore marine fauna and flora from the early Neogene of Northwestern Venezuela. Journal of Paleontology, 74, 957–968.CrossRefGoogle Scholar
  93. Sánchez-Villagra, M. R., Gasparini, Z., Lozsán, R., Moody, J. M., & Uhen, M. D. (2001). New discoveries of vertebrates from a near-shore marine fauna from the early Miocene of northwestern Venezuela. Paläontologische Zeitschrift, 75(2), 227–232.Google Scholar
  94. Santos, M. E. C. M. (1958). Equinóides miocênicos da Formação Pirabas. Boletim da Divisão de Geologia e Mineralogia, 179, 1–24.Google Scholar
  95. Santos, M. E. C. M. (1967). Equinóides miocenicos da Formação Pirabas. Atas 1° Simpósio sobre a Biota Amazônica, 1, 407–410.Google Scholar
  96. Santos, R. S., & Travassos, S. (1960). Contribuição a paleontologia do estado do Pará. Peixes fósseis da Formação Pirabas. Monografia da Divisão de Geologia e Mineralogia, 16, 1–35.Google Scholar
  97. Smith, C. J., Collins, L. S., Jaramillo, C., & Quiroz, L. I. (2010). Marine paleoenvironments of Miocene-Pliocene formations of north-central Falcon state, Venezuela. Journal of Foraminiferal Research, 40(3), 266–282.CrossRefGoogle Scholar
  98. Steindachner, F. (1876). Ichthyologische Beiträge, IV. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-aturwissenschaftlichen Classe, Wien, Abt. 1. Botanik, Zoologie, Anatomie, Geologie und Paläontologie, 72, 551–616. (pls. 1–13).Google Scholar
  99. Távora, V., & Fernandes, J. M. (1999). Estudio de los foraminíferos de la Formación Pirabas (Mioceno Inferior), estado de Pará, Brasil y su correlación con faunas del Caribe. Revista Geológica de America Central, 22, 63–74.Google Scholar
  100. Távora, V., Santos, A. A., & Araujo, R. N. (2010). Localidades fossilíferas da Formação Pirabas (Mioceno Inferior). Boletim do Museu Paraense Emilio Goeldi, Ciências Naturais, 5(2), 207–224.Google Scholar
  101. Thomas, D. J., & MacDonald, W. D. (1970). The Cantaure Formation of the Paraguaná Peninsula. Boletin Informativo de la Asociación Venezolana de Geología. Minería y Petróleo, 13, 177–179.Google Scholar
  102. Wheeler, C. B. (1960). Estratigrafía del Oligoceno y Mioceno Inferior de Falcón occidental y nororiental. Memorias III Congreso Geológico Venezolano, 1, 407–465.Google Scholar
  103. Wheeler, C. B. (1963). Oligocene and Lower Miocene stratigraphy of Western and Northeastern Falcon Basin, Venezuela. Bulletin of the American Association of Petroleum Geologists, 4, 35–68.Google Scholar
  104. White, C. A. (1887). Contribuições à Paleontologia do Brasil. Arquivos do Museu Nacional, 7, 1–273.Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2013

Authors and Affiliations

  • Orangel Antonio Aguilera
    • 1
  • Heloisa Moraes-Santos
    • 1
  • Sue Costa
    • 2
  • Fumio Ohe
    • 3
  • Carlos Jaramillo
    • 4
  • Afonso Nogueira
    • 5
  1. 1.Museu Paraense Emilio GoeldiCoordenação de Ciências da Terra e EcologiaBelémBrazil
  2. 2.Instituto de Ciências da Arte, MuseologíaUniversidade Federal do ParáBelémBrazil
  3. 3.Nara National Research Institute for Cultural PropertiesNaraJapan
  4. 4.Smithsonian Tropical Research InstitutePanamaRepublic of Panama
  5. 5.Instituto de GeociênciasUniversidade Federal do ParáBelémBrazil

Personalised recommendations