Advertisement

Swiss Journal of Palaeontology

, Volume 131, Issue 1, pp 51–60 | Cite as

Tupaiine tree shrews (Scandentia, Mammalia) from the Yuanmou Lufengpithecus locality of Yunnan, China

  • Xijun NiEmail author
  • Zhuding Qiu
Article

Abstract

Tree shrew fossils are extremely rare. Here, we report two new tupaiine tree shrews, Prodendrogale engesseri sp. nov. and Tupaia storchi sp. nov., discovered from the late Miocene deposits of Yuanmou Lufengpithecus locality of Yunnan Province in China. P. engesseri is very close to the slightly younger species P. yunnanica Qiu (Vertebrata PalAsiatica, 24: 308–319, 1986) from the Lufeng Lufengpithecus locality of Yunnan Province. Relatively lower crowns and less trenchant tooth cusps of P. engesseri show that P. engesseri is more primitive than P. yunnanica. Tupaia storchi is a species larger than Palaeotupaia sivalicus Chopra and Vasishat, 1979, T. minor Günther, 1876 and T. javanica Horsfield, 1822, but smaller than all the other extant species of Tupaia and T. miocenica Mein and Ginsburg, 1997. The mesiobuccal side of the lower molar of this species develops a very strong cingulid. It should be interpreted as a primitive condition. Discovery of diverse tree shrew fossils in Yunnan suggests that multiple evolutionary lineages of tree shrews must have coexisted in a very large area in East Asia.

Keywords

Prodendrogale Tupaia Scandentia Late Miocene Baodean 

Notes

Acknowledgments

We thank Professors Qi Guoqin, Pan Yuerong, Dr. Zhao Lingxia, Messrs. Zheng Liang, Gao Feng, Ji Xueping, Liu Jianhui, Jiang Chu, and Zhang Jiahua for their assistance in the field. Ms. Wang Guizhen sorted the concentrates. Mr. Zhang Wending took the SEM photos. We extend our gratitude to the anonymous reviewers for providing helpful comments and suggestions. This project has been financially supported by Chinese Academy of Sciences (CAS) Young Scholar Project, CAS 100-Talent Project, CAS Fossil Excavation and Preparation Fund, National Basic Research Program of China (2012CB821904) and the National Natural Science Foundation of China (NSFC 40672009, 40872032).

References

  1. Bloch, J. I., Silcox, M. T., Boyer, D. M., & Sargis, E. J. (2007). New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. PNAS, 104, 1159–1164.CrossRefGoogle Scholar
  2. Carlsson, A. (1922). Über die Tupaiidae und ihre Beziehungen zu den Insectivora und den Prosimiae. Acta Zoologica, 3, 227–270.CrossRefGoogle Scholar
  3. Chopra, S. R. K., Kaul, S., & Vasishat, R. N. (1979). Miocene tree shrews from the Indian Śivaliks. Nature, 281, 213–214.CrossRefGoogle Scholar
  4. Chopra, S. R. K., & Vasishat, R. N. (1979). Śivalik fossil tree shrew from Haritalyangar, India. Nature, 281, 214–215.CrossRefGoogle Scholar
  5. Conisbee, L. R. (1953). A list of the names proposed for genera and subgenera of recent mammals, from the publication of T. S. Palmer’s Index Generum Mammalium, 1904 to the end of 1951. London: British Museum (Natural History).Google Scholar
  6. Dutta, A. K. (1975). Micromammals from Siwaliks. Indian Minerals, 29, 76–77.Google Scholar
  7. Helgen, K. M. (2005). Order Scandentia. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world. A taxonomic and geographic reference. Third edition (pp. 104–109). Baltimore: The Johns Hopkins University Press.Google Scholar
  8. Jacobs, L. L. (1980). Siwalik fossil tree shrews. In W. P. Luckett (Ed.), Comparative biology and evolutionary relationships of tree shrews (pp. 205–216). New York: Plenum Press.Google Scholar
  9. Janecka, J. E., Miller, W., Pringle, T. H., Wiens, F., Zitzmann, A., Helgen, K. M., et al. (2007). Molecular and genomic data identify the closest living relative of primates. Science, 318, 792–794.CrossRefGoogle Scholar
  10. Le Gros Clark, W. E. (1924a). The myology of the tree-shrew (Tupaia minor). Proceedings of the Zoological Society of London, 94, 461–497.CrossRefGoogle Scholar
  11. Le Gros Clark, W. E. (1924b). On the brain of the tree-shrew (Tupaia minor). Proceedings of the Zoological Society of London, 94, 1053–1074.CrossRefGoogle Scholar
  12. Le Gros Clark, W. E. (1925). On the skull of Tupaia. Proceedings of the Zoological Society of London, 95, 559–567.CrossRefGoogle Scholar
  13. Le Gros Clark, W. E. (1926). On the anatomy of the pen-tailed tree-shrew (Ptilocercus lowii). Proceedings of the Zoological Society of London, 96, 1179–1309.CrossRefGoogle Scholar
  14. Luckett, W. P., & Jacobs, L. L. (1980). Proposed fossil tree shrew genus Palaeotupaia. Nature, 288, 104.CrossRefGoogle Scholar
  15. Lyon, M. W. (1913). Treeshrews: an account of the mammalian family Tupaiidae. Proceedings of the United States National Museum, 45, 1–188.CrossRefGoogle Scholar
  16. Martin, R. D. (1968). Towards a new definition of primates. Man, 3, 377–401.CrossRefGoogle Scholar
  17. Matthew, W. D., & Granger, W. (1924). New insectivores and ruminants from the Tertiary of Mongolia, with remarks on the correlation. American Museum Novitates, 105, 1–7.Google Scholar
  18. McKenna, M. C. (1966). Paleontology and the origin of the primates. Folia Primatologica, 4, 1–12.CrossRefGoogle Scholar
  19. McKenna, M. C., & Bell, S. K. (1997). Classification of mammals, above the species level. New York: Columbia University Press.Google Scholar
  20. Mein, P., & Ginsburg, L. (1997). Les mammifères du gisement miocène inférieur de Li Mae Long, Thaïlande : systématique, biostratigraphie et paléoenvironnement. Geodiversitas, 19, 783–844.Google Scholar
  21. Ni, X., Meng, J., Beard, K. C., Gebo, D. L., Wang, Y., & Li, C. (2010). A new tarkadectine primate from the Eocene of Inner Mongolia, China: phylogenetic and biogeographic implications. Proceedings of the Royal Society B: Biological Sciences, 277, 247–256.CrossRefGoogle Scholar
  22. Ni, X., & Qiu, Z. (2002). The micromammalian fauna from the Leilao, Yuanmou hominoid locality: Implications for biochronology and paleoecology. Journal of Human Evolution, 42, 535.CrossRefGoogle Scholar
  23. Olson, L. E., Sargis, E. J., & Martin, R. D. (2004). Phylogenetic relationships among treeshrews (Scandentia): A review and critique of the morphological evidence. Journal of Mammalian Evolution, 11, 49–71.CrossRefGoogle Scholar
  24. Olson, L. E., Sargis, E. J., & Martin, R. A. (2005). Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Molecular Phylogenetics and Evolution, 35, 656–673.CrossRefGoogle Scholar
  25. Qi, G., & Dong, W. (2006). Lufengpithecus hudienensis Site. Beijing: Science Press.Google Scholar
  26. Qiu, Z. (1986). Fossil tupaiid from the hominoid locality of Lufeng, Yunnan. Vertebrata PalAsiatica, 24, 308–319.Google Scholar
  27. Sargis, E. J. (2004). New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evolutionary Anthropology, 13, 56–66.CrossRefGoogle Scholar
  28. Schmitz, J., Ohme, M., & Zischler, H. (2000). The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of Scandentia to other eutherian orders. Molecular Biology and Evolution, 17, 1334–1343.Google Scholar
  29. Simmons, N. B. (1993). The importance of methods: Archontan phylogeny and cladistic analysis of morphological data. In R. D. E. MacPhee (Ed.), Primates and their relatives in phylogenetic perspective (pp. 1–61). New York: Plenum Press.Google Scholar
  30. Simpson, G. G. (1931). A new insectivore from the Oligocene, Ulan Gochu horizon, of Mongolia. American Museum Novitates, 505, 1–22.Google Scholar
  31. Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
  32. Springer, M. S., Burk-Herrick, A., Meredith, R., Eizirik, E., Teeling, E., O’Brien, S. J., et al. (2007). The adequacy of morphology for reconstructing the early history of placental mammals. Systematic Biology, 56, 673–684.CrossRefGoogle Scholar
  33. Steele, D. G. (1973). Dental variability in the tree shrews (Tupaiidae). In M. R. Zingeser (Ed.), Craniofacial Biology of Primates (pp. 154–179). Basel: S. Karger.Google Scholar
  34. Swindler, D. R. (1976). Dentition of living primates. London: Academic Press.Google Scholar
  35. Szalay, F. S. (1968). The beginnings of primates. Evolution, 22, 19–36.CrossRefGoogle Scholar
  36. Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In M. K. Hecht, P. C. Goody, & B. M. Hecht (Eds.), Major patterns in vertebrate evolution (pp. 315–374). New York: Plenum Press.Google Scholar
  37. Szalay, F. S., & Delson, E. (1979). Evolutionary history of the primates. London: Academic Press.Google Scholar
  38. Tong, Y. (1988). Fossil tree shrews from the Eocene Hetaoyuan Formation of Xichuan, Henan. Vertebrata PalAsiatica, 26, 214–220.Google Scholar
  39. Van Valen, L. (1965). Treeshrews, primates, and fossils. Evolution, 19, 137–151.CrossRefGoogle Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2011

Authors and Affiliations

  1. 1.Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina

Personalised recommendations