Swiss Journal of Palaeontology

, Volume 130, Issue 1, pp 7–18 | Cite as

Ordovician–Silurian Lilliput crinoids during the end-Ordovician biotic crisis



Coincident with the end-Ordovician (end-Katian for crinoids) biodiversity crash, crinoids from Anticosti Island, Quebec, experienced a statistically significant reduction in body size, an evolutionary trend termed the “Lilliput Effect”. This decrease in body size occurred for the fauna as a whole, and data indicate that neither dominant Ordovician nor dominant Silurian clades experienced preferential size decrease. Because the post-extinction fauna with a diminished size is composed of largely new taxa, this example of the Lilliput Effect is regarded as the miniaturization mode. The miniaturization occurred very rapidly; however, the recovery on Anticosti Island did not occur for as many as 7 Ma. This macroevolutionary asymmetry, as demonstrated in many other studies, highlights the need to preserve the biodiversity present on Earth today.


Crinoids Ordovician Silurian Extinction Lilliput Effect 



This work was supported by National Geographic Society grant 6789-00 and NSF grant EAR-0205968 to WIA. Careful reviews by George D. Sevastopulo and Gary D. Webster improved this manuscript.


  1. Ausich, W. I. (1980). A model for niche differentiation in lower Mississippian crinoid communities. Journal of Paleontology, 54, 273–288.Google Scholar
  2. Ausich, W. I. (1984). Calceocrinids from the Early Silurian (Llandoverian) Brassfield Formation of southwestern Ohio. Journal of Paleontology, 58, 1167–1185.Google Scholar
  3. Ausich, W. I., & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216(4542), 173–174.CrossRefGoogle Scholar
  4. Ausich, W. I., Brett, C. E., Hess H., & Simms, M. J. (1999). Crinoid form and function. In H. Hess, W. I. Ausich, C. E. Brett & M. J. Simms (Eds.) Fossil Crinoids (pp 3–30). Cambridge: Cambridge University PressGoogle Scholar
  5. Ausich, W. I., & Copper, P. (2010). Anticosti Island Crinoid Monograph. Palaeontographica Canadiana, 29, 157Google Scholar
  6. Ausich, W. I., Kammer, T. W., & Baumiller, T. K. (1994). Demise of the middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology, 20, 345–361.Google Scholar
  7. Barnes, C. R., & Bergström, S. M. (1988). Conodont biostratigraphy of the uppermost Ordovician and lowermost Silurian. British Museum of Natural History (Geology) Bulletin, 84, 325–343.Google Scholar
  8. Baumiller, T. K. (1993). Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology, 19, 304–321.Google Scholar
  9. Bergmann, C. (1847). Über die Verhältnisse der wärmeökonomie der Tiere zu ihrer Grösse. Göttinger Studien, 3, 595–708.Google Scholar
  10. Berry, W. B. N., & Boucot, A. J. (1973). Glacioeustatic control of Late Ordovician–Early Silurian platform sedimentation and faunal change. Bulletin of Geological Society of America, 84, 275–284.Google Scholar
  11. Bottjer, D. J., & Ausich, W. I. (1987). Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12, 400–420.Google Scholar
  12. Brenchley, P. J. (1989). The Late Ordovician Extinction. In S. K. Donovan (Ed.), Mass extinctions: processes and evidence (pp. 104–132). New York: Columbia University Press.Google Scholar
  13. Brenchley, P. J., Carden, G. A. F., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., et al. (2003). High-resolution stable isotope stratigraphy of upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin, 115, 89–104.CrossRefGoogle Scholar
  14. Brenchley, P. J., Marshall, J. D., Carden, G. A. F., Robertson, D. B. R., Long, D. G. F., Meidla, T., et al. (1994). Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22, 295–298.CrossRefGoogle Scholar
  15. Brower, J. C. (1978). Camerates. In R. C. Moore & C. Teichert (Eds.), Treatise on invertebrate paleontology, Part T Echinodermata 2 (1) (pp. T244–T263). Lawrence, Kansas: Geological Society of America and University of Kansas Press.Google Scholar
  16. Brower, J. C. (2006). Ontogeny of the food-gathering system in Ordovician crinoids. Journal of Paleontology, 80, 430–446.Google Scholar
  17. Chen, X., Melchin, M. J., Fan, J. & Mitchell, C. E. (2003). Ashgillian graptolite fauna of the Yangtze region and the biogeographical distribution of diversity in the latest Ordovician. Bulletin de la Societe Geologique de France, 174, 141–148.Google Scholar
  18. Copper, P. (1986). Fransian/Famennian mass extinction and cold-water oceans. Geology, 14, 835–839.CrossRefGoogle Scholar
  19. Copper, P. (2001). Reefs during multiple crises towards the Ordovician–Silurian boundary: Anticosti Island, eastern Canada, and worldwide. Canadian Journal of Earth Sciences, 38, 153–171.CrossRefGoogle Scholar
  20. Copper, P., & Long, D. G. F. (1989). Stratigraphic revisions for a key Ordovician–Silurian boundary section, Anticosti Island, Canada. Newsletters on Stratigraphy, 21, 59–73.Google Scholar
  21. Copper, P., & Long, D. G. F. (1998). Field guide to carbonates and reefs of Anticosti Island, Québec. In A. Desrochers, P. Copper & D. Long (Eds.), Paleontology stratigraphy and sedimentology of lower to middle Paleozoic rocks of the Anticosti Basin: National Park of Mingon Islands and Anticosti Island (pp. 1–97). Geological Association of Canada B Mineralogical Association of Canada, Joint Meeting, Quebec, Field Trip B8 Guidebook.Google Scholar
  22. Desrochers, A., Farley, C., Achab, A., Asselin, A., & Riva, J. F. (2010). A far-field record of the end Ordovician glaciation: the Ellis Bay Formation, Anticosti Island, Eastern Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 248–263.CrossRefGoogle Scholar
  23. Donovan, S. K. (1989). The significance of the British Ordovician crinoid fauna. Modern Geology, 13, 243–255.Google Scholar
  24. Donovan, S. K. (1994). The Late Ordovician extinctions of crinoids in Britain. National Geographic Research and Exploration, 10, 72–79.Google Scholar
  25. Eckert, J. D. (1988). Late Ordovician extinction of North American and British crinoids. Lethaia, 21, 147–167.CrossRefGoogle Scholar
  26. Finnegan, S., & Droser, M. L. (2009). Body size, energetics, and the Ordovician restructuring of marine ecosystems. Paleobiology, 34, 342–359.CrossRefGoogle Scholar
  27. Finney, S. C., Berry, W. B. N., Cooper, J. D., Ripperdan, R. L., Sweet, W. C., Jacobson, S. R., et al. (1999). Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology, 27, 215–218.CrossRefGoogle Scholar
  28. Ghienne, J. (2003). Late Ordovician sedimentary environments, glacial cycles, and post-glacial transgression in the Taoudeni Basin, West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 189, 117–145.CrossRefGoogle Scholar
  29. Girard, C., & Renaud, S. (1996). Size variations in conodonts in response to the upper Kellwasser crisis (upper Devonian of the Montagne Noire, France). Comptes Rendus de l’Academie des Sciences Serie IIa, 323, 435–442.Google Scholar
  30. Grahn, Y., & Caputo, M. V. (1992). Early Silurian glaciations in Brazil. Palaeogeography, Palaeoclimatology, and Palaeoecology, 99, 9–15.CrossRefGoogle Scholar
  31. Grahn, Y., & Caputo, M. V. (1994). Late Ordovician evolution of the intracratonic basins in north-west Gondwana. Geologische Rundschau, 84, 665–668.CrossRefGoogle Scholar
  32. Hallam, A. & Wignall, P.B. (1997). Latest Ordovician extinctions: one disaster after another. In A. Hallam & P. B. Wignall (Eds.), Mass extinctions and their aftermath (pp. 39–57). New York: Oxford University Press.Google Scholar
  33. Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.
  34. Harper, D. A. T., & Rong, J. (1995). Patterns of change in the brachiopod faunas through the Ordovician–Silurian interface. Modern Geology, 20, 83–100.Google Scholar
  35. Harries, P. J., & Knor, P. O. (2009). What does the ‘Lilliput Effect’ mean? Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 4–10.CrossRefGoogle Scholar
  36. Herrmann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D., & Slingerland, R. L. (2004b). Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 385–401.CrossRefGoogle Scholar
  37. Herrmann, A. D., Patzkowsky, M. E., & Pollard, D. (2004a). The impact of paleogeography pCO2, poleward ocean heat transport and sea level change on global cooling during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 59–74.CrossRefGoogle Scholar
  38. Hone, D. W. E., & Benton, M. J. (2005). The evolution of large size: how does Cope’s Rule work? Trends in Ecology and Evolution, 20, 4–7.CrossRefGoogle Scholar
  39. Hone, D. W. E., & Benton, M. J. (2007). Cope’s Rule in the Pterosauria and differing perceptions of Cope’s Rule at differing taxonomic levels. Journal of Evolutionary Biology, 20, 1164–1170.CrossRefGoogle Scholar
  40. Hone, D. W. E., Keesey, T. M., Pisani, D., & Purvis, A. (2005). Macroevolutionary trends in Dinosauria: Cope’s Rule. Journal of Evolutionary Biology, 18, 587–595.CrossRefGoogle Scholar
  41. Kaljo, D. (1996). Diachronous recovery patterns in Early Silurian corals, graptolites, and acritarchs. In M. B. Hart (Ed.), Biotic recovery after mass extinction events. Geological Society Special Publication 102, 127–133.Google Scholar
  42. Kaljo, D., Hints, L., Männik, P., & Nolvak, J. (2008). The succession of Hirnantian events based on data from Baltica: brachiopods, chitinozoans, conodonts, and carbon isotopes. Estonian Journal of Earth Sciences, 57, 197–218.CrossRefGoogle Scholar
  43. Kump, L. R., Arthur, M. A., Patzkowsky, M. E., Gibbs, M. T., Pinkus, D. S., & Sheehan, P. M. (1999). A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 173–187.CrossRefGoogle Scholar
  44. Lefebvre, V., Servais, T., François, L., & Averbuch, O. (2010). Did a Katian large igneous province trigger the Late Ordovician glaciation? A hypothesis tested with a carbon cycle model. Paleogeography, Palaeoclimatology, Palaeoecology, 296, 310–319.CrossRefGoogle Scholar
  45. Lockwood, R. (2005). Body size, extinction events, and early Cenozoic record of veneroid bivalves; a new role for recoveries? Paleobiology, 31, 578–590.Google Scholar
  46. Long, D. G. F. (2007). Tempestite frequency curves: a key to Late Ordovician and Early Silurian subsidence, sea level change, and orbital forcing in the Anticosti foreland basin, Quebec, Canada. NRC Canada, 44, 413–431.Google Scholar
  47. Long, D. G. F., & Copper, P. (1987). Stratigraphy of the Upper Ordovician Vauréal and Ellis Bay Formations, eastern Anticosti Island. Canadian Journal of Earth Sciences, 24, 1807–1820.CrossRefGoogle Scholar
  48. McKerrow, W. S. (1979). Ordovician and Silurian changes in sea level. Journal of the Geological Society, 136, 137–146.CrossRefGoogle Scholar
  49. Meire, S., & Dayan, T. (2003). On the validity of Bergmann’s rule. Journal of Biogeography, 30, 331–351.CrossRefGoogle Scholar
  50. Melott, A. L., & Thomas, B. C. (2009). Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage. Paleobiology, 35, 311–320.CrossRefGoogle Scholar
  51. Ogg, J. G., Ogg, G., & Gradstein, F. M. (2008). The Concise Geologic Time Scale (p. 177). Cambridge: Cambridge University PressGoogle Scholar
  52. Peters, S. E. (2005). Geological constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences, USA, 102, 12326–12331.CrossRefGoogle Scholar
  53. Peters, S. E., & Ausich, W. I. (2008). A sampling-adjusted macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology, 34, 104–116.CrossRefGoogle Scholar
  54. Rong, J.-Y., Boucot, A. J., Harper, D. A. T., Zahn, R.-B., & Newman, R. B. (2006). Global analysis of brachiopod faunas through the Ordovician and Silurian transition: reducing the role of the Lazarus effect. Canadian Journal of Earth Sciences, 43, 23–39.CrossRefGoogle Scholar
  55. Schmidt, D. N., Thierstein, H. R., & Bollman, J. (2004). The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 212, 159–180.Google Scholar
  56. Sepkoski, J. J., Jr. (1981). A factor analytic description of the marine fossil record. Paleobiology, 7, 36–53.Google Scholar
  57. Sheehan, P. M. (1973). The relation of Late Ordovician to Ordovician–Silurian changeover in North America brachiopod faunas. Lethaia, 6, 147–154.CrossRefGoogle Scholar
  58. Sheehan, P. M. (2001). The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences, 29, 331–364.CrossRefGoogle Scholar
  59. Stanley, S. M. (1973). An explanation for Cope’s rule. Evolution, 27, 1–26.CrossRefGoogle Scholar
  60. Sutcliffe, O. E., Dowdeswell, J. A., Whittington, R. J., Theron, J. N., & Craig, J. (2000). Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit. Geology, 28, 967–970.CrossRefGoogle Scholar
  61. Twitchett, R. J. (2006). The palaeoclimatology, palaeoecology and paleoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 190–213.CrossRefGoogle Scholar
  62. Twitchett, R. J. (2007). The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 132–144.CrossRefGoogle Scholar
  63. Ubaghs G. (1978). Skeletal morphology of fossil crinoids. In R. C. Moore & C. Teichert (Eds.), Treatise on invertebrate paleontology, Part T Echinodermata 2 (1) (pp. T58–T216). Lawrence, Kansas: Geological Society of America and University of Kansas Press.Google Scholar
  64. Urbanek, A. (1993). Biotic Crises in the history of Upper Silurian graptoloids: a paleobiological model. Historical Biology, 7, 29–50.CrossRefGoogle Scholar
  65. Van Valen, L. (1973). Pattern and the balance of nature. Evolutionary Theory, 1, 31–49.Google Scholar
  66. Wade, B. S., & Olsson, R. K. (2009). Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 39–46.CrossRefGoogle Scholar
  67. Wade, B. S., & Peterson, P. N. (2008). Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. Marine Micropaleontology, 68, 244–255.CrossRefGoogle Scholar
  68. Wade, B. S., & Twitchett, R. J. (2009). Extinction, dwarfing, and the Lilliput effect. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 1–3.CrossRefGoogle Scholar
  69. Waldron, J. W. F., Anderson, S. D., Carwood, P. A., Goodwin, L. B., Hall, J., Jamieson, R. A., et al. (1998). Evolution of the Appalachian Laurentian margin: Lithoprobe results in western Newfoundland. Canadian Journal of Earth Sciences, 35, 1271–1287.CrossRefGoogle Scholar
  70. Weihong, H., Shi, G. R., Feng, Q., Campi, M. J., Gu, S., Bu, J., et al. (2006). Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 145–163.Google Scholar
  71. Young, S. A., Saltzman, M. R., Derochers, A., Ausich, W. I., & Kaljo, D. (2010). Did changes in atmospheric CO2 coincide with Late Ordovician glacial-interglacial cycles? Paleogeography, Palaeoclimatology, Palaeoecology, 296, 376–388.CrossRefGoogle Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2010

Authors and Affiliations

  1. 1.Department of Anatomical SciencesStony Brook UniversityStony BrookUSA
  2. 2.School of Earth SciencesThe Ohio State UniversityColumbusUSA

Personalised recommendations