Advertisement

Effects of an alternative diet of Artemia cysts on the development and reproduction of Nesidiocoris tenuis (Hemiptera: Miridae)

  • Yuta OwashiEmail author
  • Masayuki Hayashi
  • Junichiro Abe
  • Kazuki Miura
Original Research Paper
  • 41 Downloads

Abstract

The small green mirid Nesidiocoris tenuis Reuter (Hemiptera: Miridae) preys on pest insects such as whiteflies and serves as a biological control agent in many greenhouses. However, this mirid is limited in its application, because individuals tend to escape from agricultural fields and soon die due to a lack of available food sources. In addition, the food traditionally used to culture N. tenuis is expensive. Thus, identifying low-cost foods for N. tenuis would help to increase the species’ further utilization. Brine shrimp (Artemia spp., Anostraca: Artemiidae) cysts are potentially useful as a low-cost alternative diet to sustain populations of predatory natural enemies. We evaluated the developmental and reproductive performance of N. tenuis when reared on Artemia salina L. cysts supplied in dry or wet form. The dry cysts showed a similar performance to that of Mediterranean flour moth (Ephestia kuehniella Zeller, Lepidoptera: Pyralidae) eggs, which are often used as a nutritional diet for mass rearing of N. tenuis. Although the wet cysts contributed to growth, compared to other diets, they were inferior in nymphal development time and longevity. These results suggest that relatively inexpensive Artemia dry cysts can be used to successfully breed N. tenuis and sustain populations in crop fields.

Keywords

Alternative diet Artemia salina Biological control Brine shrimp cysts Nesidiocoris tenuis 

Notes

References

  1. Arijs Y, De Clercq P (2001) Rearing Orius laevigatus on cysts of the brine shrimp Artemia franciscana. Biol Control 21:79–83.  https://doi.org/10.1006/bcon.2000.0910 CrossRefGoogle Scholar
  2. Arzone A, Alma A, Tavella L (1990) Role of mirids (Rhynchota: Heteroptera) in the control of Trialeurodes vaporariorum Westw. (Rhynchota: Aleyrodidae). Boll Zool Agric Bach 22:43–51Google Scholar
  3. Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26.  https://doi.org/10.2307/1605 CrossRefGoogle Scholar
  4. Bonte M, De Clercq P (2008) Developmental and reproductive fitness of Orius laevigatus (Hemiptera: Anthocoridae) reared on factitious and artificial diets. J Econ Entomol 101:1127–1133CrossRefGoogle Scholar
  5. Bonte M, Samih MA, De Clercq P (2010) Development and reproduction of Adalia bipunctata on factitious and artificial foods. Biocontrol 55:485–491.  https://doi.org/10.1007/s10526-010-9266-1 CrossRefGoogle Scholar
  6. Calvo J, Blockmans K, Stansly PA, Urbaneja A (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. Biocontrol 54:237–246.  https://doi.org/10.1007/s10526-008-9164-y CrossRefGoogle Scholar
  7. Castañé C, Iriarte J, Lucas E (2002) Comparison of prey consumption by Dicyphus tamaninii reared conventionally, and on a meat-based diet. Biocontrol 47:657–666.  https://doi.org/10.1023/A:1020551100273 CrossRefGoogle Scholar
  8. Castañé C, Quero R, Riudavets J (2006) The brine shrimp Artemia sp. as alternative prey for rearing the predatory bug Macrolophus caliginosus. Biol Control 38:405–412.  https://doi.org/10.1016/j.biocontrol.2006.04.011 CrossRefGoogle Scholar
  9. De Clercq P, Arijs Y, Van Meir T, Van Stappen G, Sorgeloos P, Dewettinck K, Rey M, Grenier S, Febvay G (2005) Nutritional value of brine shrimp cysts as a factitious food for Orius laevigatus (Heteroptera: Anthocoridae). Biocontrol Sci Technol 15:467–479.  https://doi.org/10.1080/09583150500086706 CrossRefGoogle Scholar
  10. De Puysseleyr V, De Man S, Hofte M, De Clercq P (2013) Plantless rearing of the zoophytophagous bug Nesidiocoris tenuis. Biocontrol 58:205–213.  https://doi.org/10.1007/s10526-012-9486-7 CrossRefGoogle Scholar
  11. Gervassio NGS, Pérez-Hedo M, Luna MG, Urbaneja A (2017) Intraguild predation and competitive displacement between Nesidiocoris tenuis and Dicyphus maroccanus, two biological control agents in tomato pests. Insect Sci 24:809–817.  https://doi.org/10.1111/1744-7917.12361 CrossRefGoogle Scholar
  12. Hongo T, Obayashi N (1997) Use of diapause eggs of brine shrimp, Artemia salina (Linnaeus), for artificial diet of coccinellid beetle, Harmonia axyridis (Pallas). Jpn J Appl Entomol Zool 41:101–105.  https://doi.org/10.1303/jjaez.41.101(in Japanese) CrossRefGoogle Scholar
  13. Itou M, Watanabe M, Watanabe E, Miura K (2013) Gut content analysis to study predatory efficacy of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) by molecular methods. Entomol Sci 16:145–150.  https://doi.org/10.1111/j.1479-8298.2012.00552.x CrossRefGoogle Scholar
  14. Kajita H (1978) The feeding behavior of Cyrtopeltis tenuis Reuter on the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Rostria 29:235–238 (in Japanese) Google Scholar
  15. Lavens P, Sorgeloos P (2000) The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture 181:397–403.  https://doi.org/10.1016/S0044-8486(99)00233-1 CrossRefGoogle Scholar
  16. Leman A, Messelink GJ (2015) Supplemental food that supports both predator and pest: a risk for biological control? Exp Appl Acarol 65:511–524.  https://doi.org/10.1007/s10493-014-9859-y CrossRefPubMedGoogle Scholar
  17. Leppla NC, King EG (1996) The role of parasitoid and predator production in technology transfer of field crop biological control. Entomophaga 41:343–360.  https://doi.org/10.1007/BF02765789 CrossRefGoogle Scholar
  18. Lucas E, Alomar O (2002) Impact of Macrolophus caliginosus presence on damage production by Dicyphus tamaninii (Heteroptera: Miridae) on tomato fruits. J Econ Entomol 95:1123–1129.  https://doi.org/10.1603/0022-0493-95.6.1123 CrossRefPubMedGoogle Scholar
  19. Lundgren JG (2009) Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol Control 51:294–305.  https://doi.org/10.1016/j.biocontrol.2009.05.016 CrossRefGoogle Scholar
  20. Marcos TF, Rejesus RS (1992) Population dynamics of Helicoverpa spp. in tobacco growing areas of Locos Norte and La Uninos. Philipp Entomol 8:1227–1246Google Scholar
  21. Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. Biocontrol 59:377–393.  https://doi.org/10.1007/s10526-014-9579-6 CrossRefGoogle Scholar
  22. Messelink GJ, Bloemhard CMJ, Hoogerbrugge H, van Schelt J, Ingegno BL, Tavella L (2015) Evaluation of mirid predatory bugs and release strategy for aphid control in sweet pepper. J Appl Entomol 139:333–341.  https://doi.org/10.1111/jen.12170 CrossRefGoogle Scholar
  23. Mollá O, Biondi A, Alonso-Valiente M, Urbaneja A (2014) A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. Biocontrol 59:175–183.  https://doi.org/10.1007/s10526-013-9553-8 CrossRefGoogle Scholar
  24. Morris JE (1971) Hydration, its reversibility, and the beginning of development in the brine shrimp, Artemia salina. Comp Biochem Physiol 39A:843–857.  https://doi.org/10.1016/0300-9629(71)90205-2 CrossRefGoogle Scholar
  25. Nakaishi K, Fukui Y, Arakawa R (2011) Reproduction of Nesidiocoris tenuis (Reuter) on Sesame. Jpn J Appl Entomol Zool 55:199–205.  https://doi.org/10.1303/jjaez.2011.199(in japanese with English abstract) CrossRefGoogle Scholar
  26. Nguyen DT, Vangansbeke D, De Clercq P (2014) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp Appl Acarol 62:181–194.  https://doi.org/10.1007/s10493-013-9749-8 CrossRefPubMedGoogle Scholar
  27. Nishimori T, Miura K, Seko T (2016) Rearing Orius strigicollis (Hemiptera: Anthocoridae) on an alternative diet of brine shrimp, Artemia salina (Anostraca: Artemiidae). Appl Entomol Zool 51:321–325.  https://doi.org/10.1007/s13355-015-0388-x CrossRefGoogle Scholar
  28. Nomikou M, Sabelis MW (2010) Pollen subsidies promote whitefly control through the numerical response of predatory mite. Biocontrol 55:253–260.  https://doi.org/10.1007/s10526-009-9233-x CrossRefGoogle Scholar
  29. Oveja MF, Arnó J, Gabarra R (2012) Effect of supplemental food on the fitness of four omnivorous predator species. IOBC WPRS Bull 80:97–101Google Scholar
  30. Oveja MF, Riudavets J, Arnó J, Gabarra R (2016) Does a supplemental food improve the effectiveness of predatory bugs on cucumber? Biocontrol 61:47–56.  https://doi.org/10.1007/s10526-015-9690-3 CrossRefGoogle Scholar
  31. Pilkington LJ, Messelink G, van Lenteren JC, Le Mottee K (2010) “Protected Biological Control”: biological pest management in the greenhouse industry. Biol Control 52:216–220.  https://doi.org/10.1016/j.biocontrol.2009.05.022 CrossRefGoogle Scholar
  32. Portillo N, Alomar O, Wäckers F (2012) Nectarivory by the plant-tissue feeding predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae): Nutritional redundancy or nutritional benefit? J Insect Physiol 58:397–401.  https://doi.org/10.1016/j.jinsphys.2011.12.013 CrossRefPubMedGoogle Scholar
  33. Pumariño L, Alomar O (2012) The role of omnivory in the conservation of predators: Orius majusculus (Heteroptera: Anthocoridae) on sweet alyssum. Biol Control 62:24–28.  https://doi.org/10.1016/j.biocontrol.2012.03.007 CrossRefGoogle Scholar
  34. Riddick EW, Wu Z, Rojas MG (2014) Potential utilization of Artemia franciscana eggs as food for Coleomegilla maculata. Biocontrol 59:575–583.  https://doi.org/10.1007/s10526-014-9597-4 CrossRefGoogle Scholar
  35. Seko T, Abe J, Miura K (2019) Effect of supplementary food containing Artemia salina on the development and survival of flightless Harmonia axyridis in greenhouses. Biocontrol 64:333–341.  https://doi.org/10.1007/s10526-019-09935-3 CrossRefGoogle Scholar
  36. Solsoloy AD, Domingo EO, Bilgera BU, Solsoloy TS, Bugawan HS, Barluado ZD (1994) Occurrence, mortality factors and within-plant distribution of bollworm, Helicoverpa armigera (Hubn) on cotton. Philipp J Sci 123:9–20Google Scholar
  37. Stinner RE (1977) Efficacy of inundative releases. Annu Rev Entomol 22:515–531.  https://doi.org/10.1146/annurev.en.22.010177.002503 CrossRefGoogle Scholar
  38. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  39. Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus caliginosus and Nesidiocoris tenuis. J Appl Entomol 133:292–296.  https://doi.org/10.1111/j.1439-0418.2008.01319.x CrossRefGoogle Scholar
  40. Urbaneja-Bernat P, Alonso-Valiente M, Tena A, Bolckmans K, Urbaneja A (2013) Sugar as nutritional supplement for the zoophytophagous predator Nesidiocoris tenuis. Biocontrol 58:57–64.  https://doi.org/10.1007/s10526-012-9466-y CrossRefGoogle Scholar
  41. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20.  https://doi.org/10.1007/s10526-011-9395-1 CrossRefGoogle Scholar
  42. van Rijn PCJ, van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679.  https://doi.org/10.1890/0012-9658(2002)083%5b2664:HPBFPF%5d2.0.CO;2 CrossRefGoogle Scholar
  43. van Stappen G (1996) Biology and ecology of Artemia. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper, pp 80–136Google Scholar
  44. Vandekerkhove B, Parmentier L, van Stappen G, Grenier S, Febvay G, Rey M, De Clercq P (2009) Artemia cysts as an alternative food for the predatory bug Macrolophus pygmaeus. J Appl Entomol 133:133–142.  https://doi.org/10.1111/j.1439-0418.2008.01332.x CrossRefGoogle Scholar
  45. Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, De Clercq P (2014) Performance of the predatory mite Amblydromalus limonicus on factitious foods. Biocontrol 59:67–77.  https://doi.org/10.1007/s10526-013-9548-5 CrossRefGoogle Scholar
  46. Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirrya L, De Clercq P (2016) Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe? Pest Manag Sci 72:466–473.  https://doi.org/10.1002/ps.4000 CrossRefPubMedGoogle Scholar
  47. Vanhaecke P, Sorgeloos P (1982) International study on Artemia. 18. The hatching rate of Artemia cysts: a comparative study. Aquacult Eng 1:263–273.  https://doi.org/10.1016/0144-8609(82)90035-8 CrossRefGoogle Scholar
  48. Wade MR, Zalucki MP, Wratten SD, Robinson KA (2008) Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol Control 45:185–199.  https://doi.org/10.1016/j.biocontrol.2007.10.024 CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2019

Authors and Affiliations

  1. 1.National Agriculture and Food Research Organization Western Region Agricultural Research CenterFukuyamaJapan

Personalised recommendations