Identification of novel genes expressed highly and selectively in the corpora allata of the silkworm, Bombyx mori (Lepidoptera: Bombycidae)

  • Yuri Homma
  • Kazuei Mita
  • Yuki Nakamura
  • Toshiki Namiki
  • Hiroaki Noda
  • Tetsuro Shinoda
  • Toru TogawaEmail author
Original Research Paper


Juvenile hormone (JH) has crucial roles in insect physiology, including development, reproduction, and polyphenism. JH is synthesized in the corpora allata (CA) from acetyl-CoA through 13 enzymatic steps, which can be divided into the early mevalonate pathway and the late JH branch pathway. Genes for these 13 enzymes have been identified in several insect species, although the three genes for the first three steps in the late pathway are unclear in many insect species. Information about the regulatory mechanism of JH biosynthesis in the CA has been accumulated in previous researches, but the process is not fully understood. In this study, we identified two genes that are expressed highly and selectively in the CA of the silkworm, Bombyx mori (L.) (Lepidoptera: Bombycidae), through the screening using EST library, DNA microarray, and qRT-PCR analyses. These genes showed developmental expression patterns that correlate well with the fluctuation pattern of JH biosynthetic activity in the CA, suggesting important roles in JH biosynthesis or its regulation.


Juvenile hormone JH biosynthesis Corpora allata DNA microarray Bombyx mori 



Juvenile hormone


Corpora allata


Corpora cardiaca


Farnesyl pyrophosphate


Farnesoic acid


JH acid methyltransferase



This work was supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Supplementary material

13355_2019_652_MOESM1_ESM.pdf (926 kb)
Supplementary material 1 (PDF 925 kb)
13355_2019_652_MOESM2_ESM.xlsx (39 kb)
Supplementary material 2 (XLSX 38 kb)


  1. Abrisqueta M, Suren-Castillo S, Maestro JL (2014) Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem Mol Biol 49:14–23CrossRefGoogle Scholar
  2. Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181–199CrossRefGoogle Scholar
  3. Cao L, Zhang P, Grant DF (2009) An insect farnesyl phosphatase homologous to the N-terminal domain of soluble epoxide hydrolase. Biochem Biophys Res Commun 380:188–192CrossRefGoogle Scholar
  4. Cheng D, Meng M, Peng J, Qian W, Kang L, Xia Q (2014) Genome-wide comparison of genes involved in the biosynthesis, metabolism, and signaling of juvenile hormone between silkworm and other insects. Genet Mol Biol 37:444–459CrossRefGoogle Scholar
  5. Consortium TISG (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045CrossRefGoogle Scholar
  6. Daimon T, Kozaki T, Niwa R, Kobayashi I, Furuta K, Namiki T, Uchino K, Banno Y, Katsuma S, Tamura T, Mita K, Sezutsu H, Nakayama M, Itoyama K, Shimada T, Shinoda T (2012) Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm Bombyx mori. PLoS Genet 8:e1002486CrossRefGoogle Scholar
  7. Goldsworthy GJ, Mordue W, Guthkelch J (1972) Studies on insect adipokinetic hormones. Gen Comp Endocrinol 18:545–551CrossRefGoogle Scholar
  8. Goodman WG, Granger NA (2005) The Juvenile Hormones. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 3. Elsevier, Oxford, pp 319–408CrossRefGoogle Scholar
  9. Gunawardene YI, Tobe SS, Bendena WG, Chow BK, Yagi KJ, Chan SM (2002) Function and cellular localization of farnesoic acid O-methyltransferase (FAMeT) in the shrimp, Metapenaeus ensis. Eur J Biochem 269:3587–3595CrossRefGoogle Scholar
  10. Huang J, Tian L, Peng C, Abdou M, Wen D, Wang Y, Li S, Wang J (2011) DPP-mediated TGFβ signaling regulates juvenile hormone biosynthesis by activating the expression of juvenile hormone acid methyltransferase. Development 138:2283–2291CrossRefGoogle Scholar
  11. Ishimaru Y, Tomonari S, Matsuoka Y, Watanabe T, Miyawaki K, Bando T, Tomioka K, Ohuchi H, Noji S, Mito T (2016) TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proc Natl Acad Sci USA 113:5634–5639CrossRefGoogle Scholar
  12. Kaneko Y, Hiruma K (2014) Short neuropeptide F (sNPF) is a stage-specific suppressor for juvenile hormone biosynthesis by corpora allata, and a critical factor for the initiation of insect metamorphosis. Dev Biol 393:312–319CrossRefGoogle Scholar
  13. Kaneko Y, Kinjoh T, Kiuchi M, Hiruma K (2011) Stage-specific regulation of juvenile hormone biosynthesis by ecdysteroid in Bombyx mori. Mol Cell Endocrinol 335:204–210CrossRefGoogle Scholar
  14. Kinjoh T, Kaneko Y, Itoyama K, Mita K, Hiruma K, Shinoda T (2007) Control of juvenile hormone biosynthesis in Bombyx mori: cloning of the enzymes in the mevalonate pathway and assessment of their developmental expression in the corpora allata. Insect Biochem Mol Biol 37:808–818CrossRefGoogle Scholar
  15. Laufer H, Borst D, Baker FC, Reuter CC, Tsai LW, Schooley DA, Carrasco C, Sinkus M (1987) Identification of a juvenile hormone-like compound in a crustacean. Science 235:202–205CrossRefGoogle Scholar
  16. Mato JM, Martinez-Chantar ML, Lu SC (2013) S-adenosylmethionine metabolism and liver disease. Ann Hepatol 12:183–189CrossRefGoogle Scholar
  17. Mayoral JG, Nouzova M, Navare A, Noriega FG (2009) NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis. Proc Natl Acad Sci USA 106:21091–21096CrossRefGoogle Scholar
  18. Minakuchi C, Namiki T, Yoshiyama M, Shinoda T (2008) RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J 275:2919–2931CrossRefGoogle Scholar
  19. Minakuchi C, Ishii F, Washidu Y, Ichikawa A, Tanaka T, Miura K, Shinoda T (2015) Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum. J Insect Physiol 80:61–70CrossRefGoogle Scholar
  20. Nath AK, Ryu JH, Jin YN, Roberts LD, Dejam A, Gerszten RE, Peterson RT (2015) PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Cell Rep 10:694–701CrossRefGoogle Scholar
  21. Niimi S, Sakurai S (1997) Development changes in juvenile hormone and juvenile hormone acid titers in the hemolymph and in vitro juvenile hormone synthesis by corpora allata of the silkworm, Bombyx mori. J Insect Physiol 43:875–884CrossRefGoogle Scholar
  22. Nijhout HF (1994) Insect hormones. Princeton University Press, PrincetonGoogle Scholar
  23. Niwa R, Niimi T, Honda N, Yoshiyama M, Itoyama K, Kataoka H, Shinoda T (2008) Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem Mol Biol 38:714–720CrossRefGoogle Scholar
  24. Noriega FG (2014) Juvenile hormone biosynthesis in insects: what is new, what do we know, and what questions remain? Int Scholar Res Notices 2014:967361CrossRefGoogle Scholar
  25. Nouzova M, Edwards MJ, Mayoral JG, Noriega FG (2011) A coordinated expression of biosynthetic enzymes controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes. Insect Biochem Mol Biol 41:660–669CrossRefGoogle Scholar
  26. Nyati P, Nouzova M, Rivera-Perez C, Clifton ME, Mayoral JG, Noriega FG (2013) Farnesyl phosphatase, a Corpora allata enzyme involved in juvenile hormone biosynthesis in Aedes aegypti. PLoS One 8:e71967CrossRefGoogle Scholar
  27. Rivera-Perez C, Nouzova M, Clifton ME, Garcia EM, LeBlanc E, Noriega FG (2013) Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora allata of mosquitoes. Insect Biochem Mol Biol 43:675–682CrossRefGoogle Scholar
  28. Schooley DA, Horodyski FM, Coast GM (2005) Hormones controlling homeostasis in insects. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 3. Elsevier, Oxford, pp 493–550CrossRefGoogle Scholar
  29. Shinoda T, Itoyama K (2003) Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci USA 100:11986–11991CrossRefGoogle Scholar
  30. Sim C, Kang DS, Kim S, Bai X, Denlinger DL (2015) Identification of FOXO targets that generate diverse features of the diapause phenotype in the mosquito Culex pipiens. Proc Natl Acad Sci USA 112:3811–3816PubMedGoogle Scholar
  31. Tu MP, Yin CM, Tatar M (2005) Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 142:347–356CrossRefGoogle Scholar
  32. Ueda H, Shinoda T, Hiruma K (2009) Spatial expression of the mevalonate enzymes involved in juvenile hormone biosynthesis in the corpora allata in Bombyx mori. J Insect Physiol 55:798–804CrossRefGoogle Scholar
  33. Willis JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem Mol Biol 40:189–204CrossRefGoogle Scholar
  34. Willis JH, Iconomidou VA, Smith RF, Hamodrakas SJ (2005) Cuticular proteins. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier Ltd., Oxford, pp 79–109CrossRefGoogle Scholar
  35. Xiao J, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE (2011) Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc Natl Acad Sci USA 108:11860–11865CrossRefGoogle Scholar
  36. Yamanaka N, Yamamoto S, Zitnan D, Watanabe K, Kawada T, Satake H, Kaneko Y, Hiruma K, Tanaka Y, Shinoda T, Kataoka H (2008) Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS One 3:e3048CrossRefGoogle Scholar
  37. Zhang J, Guan Z, Murphy AN, Wiley SE, Perkins GA, Worby CA, Engel JL, Heacock P, Nguyen OK, Wang JH, Raetz CR, Dowhan W, Dixon JE (2011) Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13:690–700CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2019

Authors and Affiliations

  1. 1.Department of Biosciences, College of Humanities and SciencesNihon UniversityTokyoJapan
  2. 2.Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
  3. 3.Faculty of Food and Agricultural SciencesFukushima UniversityFukushimaJapan

Personalised recommendations