Advertisement

A simple method for distinguishing Bursaphelenchus xylophilus, B. mucronatus mucronatus, and B. m. kolymensis (Nematoda: Aphelenchoididae) by polymerase chain reaction with specific primers designed based on cytochrome oxidase subunit I genes

  • Koji Matsunaga
  • Mitsuteru Akiba
  • Natsumi Kanzaki
  • Katsumi TogashiEmail author
Technical Note
  • 42 Downloads

Abstract

Based on DNA sequences of mitochondrial cytochrome oxidase subunit I (mtCOI) genes, three PCR forward primers specific for Bursaphelenchus mucronatus mucronatus, B. m. kolymensis, and B. xylophilus (Nematoda: Aphelenchoididae), and one common PCR reverse primer were developed to determine the interspecific hybrids in a population. PCR amplification with the new primer pairs was expected to produce DNA fragments of 286 bp, 117 bp and 479 bp for B. m. mucronatus, B. m. kolymensis, and B. xylophilus, respectively. Electrophoresis of PCR products with the new primer pairs distinguished the two B. mucronatus subspecies and B. xylophilus collected in Japan. It also exhibited a band-free image for Bursaphelenchus doui, B. niphades, B. sinensis, B. firmae, Bursaphelenchus sp. (NK230), and Aphelenchoides stammeri, whereas it exhibited one (ca. 100-bp DNA fragment) and two (ca. 100 and 500-bp DNA fragments) bands for B. poligraphi and B. yongensis, respectively. As PCR products with other primer pairs for nuclear ribosomal RNA (rRNA) gene distinguished B. mucronatus (210 bp DNA fragment), B. xylophilus (557 bp fragment), and the eight other nematode species (no amplification), primer pairs for mtCOI and rRNA genes can determine whether B. poligraphi resides in specified trees or in study pine stands. Thus, those primer pairs would be helpful to find out hybrids between B. mucronatus and B. xylophilus and to analyze the dynamics of hybrids and introgressants in hybrid-derived populations in field and laboratory.

Keywords

Cytochrome oxidase subunit I Discrimination Mitochondrial DNA PCR Pinewood nematode 

Notes

Acknowledgements

We are grateful to Drs. T. Aikawa and H. Kosaka of the Forestry and Forest Products Research Institute and Dr. S. Jikumaru of Hiroshima Prefectural Technology Research Institute for providing some isolates of B. xylophilus and B. mucronatus. We also thank Dr. A. Watanabe for his technical support. This work was supported in part by a Grant-in-aid for Young Scientists (B) from JSPS (no. 20780125) to KM and Grants-in-aid for Scientific Research from JSPS (nos. 18208013 and 22380081) to KT.

References

  1. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York, p 215Google Scholar
  2. Bolla RI, Boschert M (1993) Pinewood nematode species complex: interbreeding potential and chromosome number. J Nematol 25:227–238Google Scholar
  3. Braasch H, Gu J, Burgermeister W (2011) Bursaphelenchus mucronatus kolymensis comb. n.–new definition of the “European type” of B. mucronatus. J Nematode Morph Syst 14:77–90Google Scholar
  4. Brasier CM, Buck KW (2001) Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions 3:223–233CrossRefGoogle Scholar
  5. Burgermeister W, Braasch H, Metge K, Gu J, Schröder T, Woldt E (2009) ITS-RFLP analysis, an efficient tool for differentiation of Bursaphelenchus species. Nematology 11:649–668CrossRefGoogle Scholar
  6. Cheng XY, Xie PZ, Cheng FX, Xu RM, Xie BY (2009) Competitive displacement of the native species Bursaphelenchus mucronatus by alien species Bursaphelenchus xylophilus (Nematoda: Aphelenchida: Aphelenchoididae): a case of successful invasion. Biol Invasion 11:205–213CrossRefGoogle Scholar
  7. de Guiran G, Bruguier N (1989) Hybridization and phylogeny of the pine wood nematode (Bursaphelenchus spp.). Nematologica 35:321–330CrossRefGoogle Scholar
  8. Dowling TE, Secor CL (1997) The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst 28:593–619CrossRefGoogle Scholar
  9. Enda N (1988) The damage of pine wilt disease in Taiwan. Forest Pests 37:161–166 (in Japanese) Google Scholar
  10. Kanzaki N, Futai K (2002) A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology 4:35–41CrossRefGoogle Scholar
  11. Kanzaki N, Futai K (2007) Isolation of Bursaphelenchus sinensis (Nematoda: Parasitaphelenchidae) from dead Japanese black pine, Pinus thunbergii Parl. in Japan. J Nematode Morphol System 9:129–136Google Scholar
  12. Kanzaki N, Aikawa T, Maehara N, Ichihara Y (2011) An inoculation experiment of Japanese Bursaphelenchus nematodes on Japanese black and red pine, Pinus thunbergii and P. densiflora. J For Res 16:325–330CrossRefGoogle Scholar
  13. Kiyohara T, Tokushige Y (1971) Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J Jpn For Soc 53:210–218 (in Japanese with English summary) Google Scholar
  14. La YJ, Moon YS, Yeo WH, Shin SC, Bak WC (1998) Recent status of pine wilt disease in Korea. In: Futai K, Togashi K, Ikeda T (eds) Sustainability of pine forests in relation to pine wilt and decline. Shokado, Tokyo, pp 239–241Google Scholar
  15. Mamiya Y (1986) Interspecific hybridization between Bursaphelenchus xylophilus and B. mucronatus (Aphelenchida: Aphelenchoididae). Appl Entomol Zool 21:159–163CrossRefGoogle Scholar
  16. Mamiya Y, Enda N (1979) Bursaphelenchus mucronatus n. sp. (Nematoda: Aphelenchoididae) from pine wood and its biology and pathogenicity to pine trees. Nematologica 25:353–361CrossRefGoogle Scholar
  17. Matsunaga K, Togashi K (2004) A simple method for discriminating Bursaphelenchus xylophilus and B. mucronatus by species-specific polymerase chain reaction primer pairs. Nematology 6:273–277CrossRefGoogle Scholar
  18. Mota MM, Braasch H, Bravo MA, Penas AC, Burgermeister W, Metge K, Sousa E (1999) First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1:727–734CrossRefGoogle Scholar
  19. Nagashima S, Hayashi Y, Fujiwara H (1975) Distribution of Bursaphelenchus mucronatus and damage of pine forest by the nematode in Yamaguchi Prefecture. Trans Annu Meeting Kansai Branch Jpn For Soc 26:271–274 (in Japanese) Google Scholar
  20. Riga E, Beckenbach K, Webster JM (1992) Taxonomie relationships of Bursaphelenchus xylophilus and B. mucronatus based on interspecific and intraspecific cross-hybridization and DNA analysis. Fundam Appl Nematol 15:391–395Google Scholar
  21. Robertson L, Cobacho-Arcos S, Escuer M, Santiago-Merino R, Esparrago G, Abelleira A, Navas A (2011) Incidence of the pinewood nematode Bursaphelenchus xylophilus Steiner and Buhrer, 1934 (Nickle, 1970) in Spain. Nematology 13:755–757CrossRefGoogle Scholar
  22. Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing, and in vitro amplification of DNA. Nucleic Acids Res 17:8543–8551CrossRefGoogle Scholar
  23. Ryss A, Vieira P, Mota M, Kulinich O (2005) A synopsis of the genus Bursaphelenchus Fuchs, 1937 (Aphelenchida: Parasitaphelenchidae) with keys to species. Nematology 7:393–458CrossRefGoogle Scholar
  24. Taga Y, Goto S, Matsunaga K, Togashi K (2011) Temporal changes in characteristics of populations originating from interbreeding between Bursaphelenchus xylophilus and B. mucronatus. Nematology 13:701–712CrossRefGoogle Scholar
  25. Tanaka R, Kikuchi T, Aikawa T, Kanzaki N (2012) Simple and quick methods for nematode DNA preparation. Appl Entomol Zool 47:291–294CrossRefGoogle Scholar
  26. Tanaka SE, Tanaka R, Akiba M, Aikawa T, Maehara N, Takeuchi Y, Kanzaki N (2014) Bursaphelenchus niphades n. sp. (Tylenchina: Aphelenchoididae) amensally associated with Niphades variegatus (Roelofs) (Coleoptera: Curculionidae). Nematology 16:259–281CrossRefGoogle Scholar
  27. Terashita T (1981) Experimental crossing between Bursaphelenchus lignicolus and B. mucronatus. Mem Fac Agr Kagoshima Univ 17:103–116Google Scholar
  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  29. Yang BJ, Wang QL (1989) Distribution of the pinewood nematode in China and susceptibility of some Chinese and exotic pines to the nematode. Can J For Res 19:1527–1530CrossRefGoogle Scholar
  30. Ye W, Giblin-Davis RM, Braasch H, Morris K, Thomas WK (2007) Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol Phylogenet Evol 43:1185–1197CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2019

Authors and Affiliations

  1. 1.Kyushu Regional Breeding Office, Forest Tree Breeding CenterForestry and Forest Products Research InstituteKoshiJapan
  2. 2.Forestry and Forest Products Research InstituteTsukubaJapan
  3. 3.Kansai Research CenterForestry and Forest Products Research InstituteFushimiJapan
  4. 4.Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyoJapan

Personalised recommendations