Advertisement

Applied Entomology and Zoology

, Volume 53, Issue 2, pp 215–221 | Cite as

Chemical and molecular identification of the invasive termite Zootermopsis nevadensis (Isoptera: Archotermopsidae) in Japan

  • Toshihisa Yashiro
  • Yuki Mitaka
  • Tomonari Nozaki
  • Kenji Matsuura
Original Research Paper
  • 99 Downloads

Abstract

Numerous termite species have been introduced outside their native ranges by human transport, and some have become invasive. The dampwood termite Zootermopsis nevadensis (Hagen), which is native to western North America, has been introduced to and become established in Kawanishi City, Hyogo Prefecture, Japan. Zootermopsis nevadensis is subdivided into two subspecies based on cuticular hydrocarbon (CHC) phenotypes: Znevadensis nevadensis and Znevadensis nuttingi (Haverty and Thorne). Here, we identified Znevadensis in Japan as hybrids between the two subspecies. Chemical analysis showed the presence of 7,15-dimethylhenicosane and 5,17-dimethylhenicosane in the CHCs of Znevadensis in Japan, corresponding to the CHC phenotype of Znnevadensis. Conversely, all mitochondrial cytochrome c oxidase subunit I sequences of Znevadensis in Japan were identical to sequences from Znnuttingi and hybrids between the two subspecies from a native hybrid zone in California, USA. In addition, phylogenetic analysis showed that Znevadensis in Japan formed a clade with Znnuttingi and hybrids between the two subspecies. Our results show discordance between the chemical and genetic features of Znevadensis in Japan, indicating that individuals of Znevadensis in Japan are hybrids between the two subspecies.

Keywords

Biological invasions Hybridization Social insects Isoptera 

Notes

Acknowledgements

We thank Naoto Yoshioka for termite collection; Naoki Mori for providing GC–MS facilities; Nathan Lo for helpful discussion. This work was partly supported by Japanese Society for the Promotion of Science (JSPS) Kiban Kenkyu S Grant No. 25221206 (to K.M.), and a JSPS Postdoctoral Fellowship for Research Abroad No. 558 (to T.Y).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148Google Scholar
  2. Aldrich BT, Kambhampati S (2007) Population structure and colony composition of two Zootermopsis nevadensis subspecies. Heredity 99:443–451.  https://doi.org/10.1038/sj.hdy.6801022 CrossRefPubMedGoogle Scholar
  3. Aldrich BT, Kambhampati S (2009) Preliminary analysis of a hybrid zone between two subspecies of Zootermopsis nevadensis. Insectes Soc 56:439–450.  https://doi.org/10.1007/s00040-009-0041-1 CrossRefGoogle Scholar
  4. Anderson E (1949) Introgressive hybridization. Wiley, New YorkCrossRefGoogle Scholar
  5. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, OxfordGoogle Scholar
  6. Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 363–387CrossRefGoogle Scholar
  7. Booth W, Brent CS, Calleri DV, Rosengaus RB, Traniello JFA, Vargo EL (2012) Population genetic structure and colony breeding system in dampwood termites (Zootermopsis angusticollis and Znevadensis nuttingi). Insectes Soc 59:127–137.  https://doi.org/10.1007/s00040-011-0198-2 CrossRefGoogle Scholar
  8. Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 25–51CrossRefGoogle Scholar
  9. Evans TA (2010) Invasive termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 519–562CrossRefGoogle Scholar
  10. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474.  https://doi.org/10.1146/annurev-ento-120811-153554 CrossRefPubMedGoogle Scholar
  11. Glastad KM, Gokhale K, Liebig J, Goodisman MAD (2016) The caste-and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Sci Rep 6:37110.  https://doi.org/10.1038/srep37110 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Grace JK, Woodrow RJ, Yates JR (2002) Distribution and management of termites in Hawaii. Sociobiology 40:87–94Google Scholar
  13. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971.  https://doi.org/10.1073/pnas.0510466103 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  15. Haverty MI, Thorne BL (1989) Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites, Zootermopsis (Isoptera: Termopsidae). J Insect Behav 2:523–543.  https://doi.org/10.1007/BF01053352 CrossRefGoogle Scholar
  16. Haverty MI, Page M, Nelson LJ, Blomquist GJ (1988) Cuticular hydrocarbons of dampwood termites, Zootermopsis: intra-and intercolony variation and potential as taxonomic characters. J Chem Ecol 14:1035–1058.  https://doi.org/10.1007/BF01018791 CrossRefPubMedGoogle Scholar
  17. Haverty MI, Woodrow RJ, Nelson LJ, Grace JK (2000) Cuticular hydrocarbons of termites of the Hawaiian Islands. J Chem Ecol 26:1167–1191.  https://doi.org/10.1023/A:1005479826651 CrossRefGoogle Scholar
  18. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817.  https://doi.org/10.1073/pnas.0406166101 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 389–407CrossRefGoogle Scholar
  20. Johns PM, Howard KJ, Breisch NL, Rivera A, Thorne BL (2009) Nonrelatives inherit colony resources in a primitive termite. Proc Natl Acad Sci USA 106:17452–17456.  https://doi.org/10.1073/pnas.0907961106 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the Isoptera of the world: 2. Basal families. Bull Am Mus Nat Hist 377:204–621.  https://doi.org/10.1206/377.2 Google Scholar
  22. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391.  https://doi.org/10.1016/S0169-5347(02)02554-5 CrossRefGoogle Scholar
  23. Masuoka Y, Maekawa K (2016) Ecdysone signaling regulates soldier-specific cuticular pigmentation in the termite Zootermopsis nevadensis. FEBS Lett 590:1694–1703.  https://doi.org/10.1002/1873-3468.12219 CrossRefPubMedGoogle Scholar
  24. Miura T, Koshikawa S, Matsumoto T (2003) Winged presoldiers induced by a juvenile hormone analog in Zootermopsis nevadensis: implications for plasticity and evolution of caste differentiation in termites. J Morphol 257:22–32.  https://doi.org/10.1002/jmor.10100 CrossRefPubMedGoogle Scholar
  25. Morimoto K (2000) On the damp-wood termite genus Zootermopsis introduced to Japan. Siroari 122:3–8 (in Japanese)Google Scholar
  26. Noble JC, Müller WJ, Whitford WG, Pfitzner GH (2009) The significance of termites as decomposers in contrasting grassland communities of semi-arid eastern Australia. J Arid Environ 73:113–119.  https://doi.org/10.1016/j.jaridenv.2008.08.004 CrossRefGoogle Scholar
  27. Shellman-Reeve JS (1990) Dynamics of biparental care in the dampwood termite, Zootermopsis nevadensis (Hagen): response to nitrogen availability. Behav Ecol Sociobiol 26:389–397.  https://doi.org/10.1007/BF00170895 CrossRefGoogle Scholar
  28. Suzuki H (2000) Notes on the American common damp-wood termite, Zootermopsis angusticollis (Hagen) found in Kawanishi City, Hyogo Prefecture. House Househ Ins Pest 21:137–144 (in Japanese)Google Scholar
  29. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods) v4.0b10. Sinauer, SunderlandGoogle Scholar
  30. Terrapon N, Li C, Robertson HM et al (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:3636.  https://doi.org/10.1038/ncomms4636 CrossRefPubMedGoogle Scholar
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882.  https://doi.org/10.1093/nar/25.24.4876 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Thorne BL, Haverty MI (1989) Accurate identification of Zootermopsis species (Isoptera: Termopsidae) based on a mandibular character of nonsoldier castes. Ann Entomol Soc Am 82:262–266.  https://doi.org/10.1093/aesa/82.3.262 CrossRefGoogle Scholar
  33. Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  34. Wilson EO (1990) Success and dominance in ecosystems: the case of the social insects. Ecology Institute, OldendorfGoogle Scholar
  35. Yashiro T, Matsuura K, Tanaka C (2011) Genetic diversity of termite-egg mimicking fungi “termite balls” within the nests of termites. Insectes Soc 58:57–64.  https://doi.org/10.1007/s00040-010-0116-z CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2018

Authors and Affiliations

  1. 1.Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.School of Life and Environmental SciencesUniversity of SydneySydneyAustralia

Personalised recommendations