Advertisement

Applied Entomology and Zoology

, Volume 53, Issue 2, pp 193–204 | Cite as

Captures of oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), in traps baited with host-plant volatiles in Chile

  • Wilson Barros-Parada
  • Byrappa Ammagarahalli
  • Esteban Basoalto
  • Eduardo Fuentes-Contreras
  • César Gemeno
Original Research Paper

Abstract

Studies in Australia and China identified host-plant volatile blends from peach and pear that captured relatively high numbers of Grapholita molesta (Busck). To determine if these blends are attractants in other countries and relative to each other, the two host-plant blends, a laboratory blend identified in Switzerland, and a new “total blend” made by mixing components of all three blends, were field-tested in Chile for the first time. The same solvent type, concentrations, and dispensers as in the original studies, plus an additional concentration and solvent, were used. Only the Swiss blend at the low n-hexane concentration captured significantly more males than the solvent traps, albeit in very low numbers (1.46 ± 1.46, mean ± SEM males/trap/week). Furthermore, host-plant blends decreased male captures in sex pheromone traps, and the effect was dose-dependent for the Chinese and total blends. A laboratory flight tunnel test confirmed the lack of G. molesta male response to the Australian, Chinese, and Swiss plant blends. In the flight tunnel, however, the males responded sooner and in higher numbers to mixtures of sex pheromone with host-plant blends than they did to the sex pheromone alone.

Keywords

Host-plant volatiles Sex pheromone Synergism Flight tunnel Traps 

Notes

Acknowledgements

B.A. acknowledges support by a Ph.D. fellowship from MICINN (Spain). W.B.P acknowledges a FONDECYT-Postdoctorado Grant 3140285 (Chile). The visit of C.G. to Chile was funded by Chilean Government grant CONICYT-Atracción de Capital Humano Avanzado del Extranjero-Modalidad Estadías Cortas (MEC) 80120005. Field work in Chile was supported by Alexis Muñoz, Nicolás Berríos, and Carlos Cavieres.

References

  1. Allison JD, Cardé RT (2016) Pheromones: reproductive isolation and evolution in moths. In: Allison JD, Cardé RT (eds) Pheromone communication in moths: evolution, behavior and application. University of California Press, Oakland, pp 11–24Google Scholar
  2. Ammagarahalli B, Gemeno C (2015) Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae). J Insect Physiol 81:118–128.  https://doi.org/10.1016/j.jinsphys.2015.07.009 CrossRefPubMedGoogle Scholar
  3. Ammagarahalli C, Chianella L, Gomes P, Gemeno C (2017) Role of plant volatiles and hetero-specific pheromone components in the wind tunnel response of male Grapholita molesta (Lepidoptera: Tortricidae) to modified sex pheromone blends. Bull Entomol Res 107:573–582.  https://doi.org/10.1017/S0007485317000013 CrossRefPubMedGoogle Scholar
  4. Andersson MN, Schlyter F, Hill SR, Dekker T (2012) What reaches the antenna? How to calibrate odor flux and ligand–receptor affinities. Chem Senses 37:403–420.  https://doi.org/10.1093/chemse/bjs009 CrossRefPubMedGoogle Scholar
  5. Barros-Parada W, Basoalto E, Fuentes-Contreras E, Cichón L, Knight AL (2016) Acetic acid lure placement within traps affects moth catches of codling moth (Lepidoptera: Tortricidae). J Appl Entomol 140:786–795.  https://doi.org/10.1111/jen.12311 CrossRefGoogle Scholar
  6. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135.  https://doi.org/10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  7. Cai X, Bian L, Xu X, Luo Z, Li Z, Chen Z (2017) Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci Rep 7:41818.  https://doi.org/10.1038/srep41818 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cichón L, Fuentes-Contreras E, Garrido S, Lago J, Barros-Parada W, Basoalto E, Hilton R, Knight AL (2013) Monitoring oriental fruit moth (Lepidoptera: Tortricidae) with sticky traps baited with terpinyl acetate and sex pheromone. J Appl Entomol 137:275–281.  https://doi.org/10.1111/j.1439-0418.2012.01732.x CrossRefGoogle Scholar
  9. Dai J, Deng J, Du J (2008) Development of bisexual attractants for diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) based on sex pheromone and host volatiles. Appl Entomol Zool 43:631–638.  https://doi.org/10.1303/aez.2008.631 CrossRefGoogle Scholar
  10. De Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897.  https://doi.org/10.1007/s10886-008-9485-4 CrossRefPubMedGoogle Scholar
  11. Deng JY, Wei HY, Huang YP, Du JW (2004) Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J Chem Ecol 30:2037–2045.  https://doi.org/10.1023/B:JOEC.0000045593.62422.73 CrossRefPubMedGoogle Scholar
  12. Dickens JC, Smith JW, Light DM (1993) Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm Heliothis virescens (Lep.: Noctuidae). Chemoecology 4:175–177.  https://doi.org/10.1007/BF01256553 CrossRefGoogle Scholar
  13. González RH (2003) Las polillas de la fruta en Chile (Lepidoptera: Tortricidae; Pyralidae). Universidad de Chile, Santiago (in Spanish with English summary)Google Scholar
  14. Guillette LJ, Iguchi T (2012) Life in a contaminated world. Science 337:1614–1615.  https://doi.org/10.1126/science.1226985 CrossRefPubMedGoogle Scholar
  15. Holdcraft R, Rodriguez-Saona C, Stelinski LL (2016) Pheromone autodetection: evidence and implications. Insects 7:17.  https://doi.org/10.3390/insects7020017 CrossRefPubMedCentralGoogle Scholar
  16. Il’ichev AL, Kugimiya S, Williams DG, Takabayashi J (2009) Volatile compounds from young peach shoots attract males of oriental fruit moth in the field. J Plant Interact 4:289–294.  https://doi.org/10.1080/17429140903267814 CrossRefGoogle Scholar
  17. Ivaldi-Sender C (1974) Techniques simples pour un e’levage permanent de la tordeuse orientale Grapholita molesta (Lepidoptera: Tortricidae) sur milieu artificiel. Ann Zool Ecol Anim 6:337–343 (in French with English summary)Google Scholar
  18. Kirk H, Dorn S, Mazzi D (2013) Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol 13:1–12.  https://doi.org/10.1186/1472-6785-13-12 CrossRefGoogle Scholar
  19. Knight A, Basoalto E, Hilton R, Molinari F, Zoller B, Hansen R, Krawczyk G, Hull L (2013) Monitoring oriental fruit moth (Lepidoptera: Tortricidae) with the Ajar bait trap in orchards under mating disruption. J Appl Entomol 137:650–660.  https://doi.org/10.1111/jen.12061 CrossRefGoogle Scholar
  20. Knight AL, Cichón L, Lago J, Fuentes-Contreras E, Barros-Parada W, Hull L, Krawczyk G, Zoller B, Hansen R, Hilton R, Basoalto E (2014) Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomones. J Appl Entomol 138:783–794.  https://doi.org/10.1111/jen.12138 CrossRefGoogle Scholar
  21. Knight AL, Barros-Parada W, Bosch D, Escudero-Colomar LA, Fuentes-Contreras E, Hernández-Sánchez J, Yung C, Kim Y, Kovanci OB, Levi A, Lo P, Molinari F, Valls J, Gemeno C (2015) Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bull Entomol Res 105:23–31.  https://doi.org/10.1017/S0007485314000637 CrossRefPubMedGoogle Scholar
  22. Knudsen GK, Bengtsson M, Kobro S, Jaastad G, Hofsvang T, Witzgall P (2008) Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles. Physiol Entomol 33:1–6.  https://doi.org/10.1111/j.1365-3032.2007.00592.x CrossRefGoogle Scholar
  23. Kong WN, Li J, Fan RJ, Li SC, Ma R (2014) Sex-pheromone-mediated mating disruption technology for the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae): overview and prospects. Psyche 2014:1–8.  https://doi.org/10.1155/2014/253924 CrossRefGoogle Scholar
  24. Kuenen L, Gilbert C (2014) Visual ground pattern modulates flight speed of male Oriental fruit moths. Physiol Entomol 39:271–279.  https://doi.org/10.1111/phen.12072 CrossRefGoogle Scholar
  25. Light DM, Flath RA, Buttery RG, Zalom FG, Rice RE, Dickens JC, Jang EB (1993) Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecology 4:145–152.  https://doi.org/10.1007/BF01256549 CrossRefGoogle Scholar
  26. Light DM, Knight AL, Henrick CA, Rajapaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merill G, Roitman J, Bruce CC (2001) A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333–338.  https://doi.org/10.1007/s001140100243 CrossRefPubMedGoogle Scholar
  27. Light DM, Grant JA, Haff RP, Knight AL (2017) Addition of pear ester with sex pheromone enhances disruption of mating by female codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with meso dispensers. Environ Entomol 46:319–327.  https://doi.org/10.1093/ee/nvw168 CrossRefPubMedGoogle Scholar
  28. Lu PF, Huang LQ, Wang CZ (2012) Identification and field evaluation of pear fruit volatiles attractive to the oriental fruit moth Cydia molesta. J Chem Ecol 38:1003–1016.  https://doi.org/10.1007/s10886-012-0152-4 CrossRefPubMedGoogle Scholar
  29. Lu PF, Qiao HL, Xu ZC, Cheng J, Zong SX, Luo PQ (2014) Comparative analysis of peach and pear fruit volatiles attractive to the oriental fruit moth Cydia molesta. J Plant Interact 9:388–395.  https://doi.org/10.1080/17429145.2013.843724 CrossRefGoogle Scholar
  30. Lu PF, Wang R, Wang CZ, Luo YQ, Qiao HL (2015) Sexual differences in electrophysiological and behavioral responses of Cydia molesta to peach and pear volatiles. Entomol Exp Appl 157:279–290.  https://doi.org/10.1111/eea.12362 CrossRefGoogle Scholar
  31. Meagher RL Jr (2001) Trapping fall armyworm (Lepidoptera: Noctuidae) adults in traps baited with pheromone and a synthetic floral volatile compound. Fla Entomol 84:288–292.  https://doi.org/10.2307/3496181 CrossRefGoogle Scholar
  32. Meagher RL Jr, Mitchell ER (1998) Phenylacetaldehyde enhances upwind flight of male fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) to its sex pheromone. Fla Entomol 81:556–559.  https://doi.org/10.2307/3495958 CrossRefGoogle Scholar
  33. Miller JR, Gut LJ (2015) Mating disruption for the 21st century: Matching technology with mechanism. Environ Entomol 44:427–453.  https://doi.org/10.1093/ee/nvv052 CrossRefPubMedGoogle Scholar
  34. Myers CT, Hull LA, Krawczyk G (2007) Effects of orchard host plants (apple and peach) on development of oriental fruit moth (Lepidoptera: Tortricidae). J Econ Entomol 100:421–430.  https://doi.org/10.1093/jee/99.4.1176 CrossRefPubMedGoogle Scholar
  35. Piñero JC, Dorn S (2007) Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomol Exp Appl 125:185–194.  https://doi.org/10.1111/j.1570-7458.2007.00614.x CrossRefGoogle Scholar
  36. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Austria. http://www.R-projectorg/, ISBN 3-900051-07-0
  37. Rothschild GHL, Vickers RA (1991) Biology, ecology and control of the oriental fruit moth. In: van der Geest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control. World Crop Pests, vol 5. Elsevier, Amsterdam, pp 389–412Google Scholar
  38. Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97.  https://doi.org/10.1038/hdy.2008.55 CrossRefPubMedGoogle Scholar
  39. Szendrei Z, Rodriguez-Saona C (2010) A meta-analysis of insect pest behavioral manipulation with plant volatiles. Entomol Exp Appl 134:201–210.  https://doi.org/10.1111/j.1570-7458.2009.00954.x CrossRefGoogle Scholar
  40. Tang R, Zhang JP, Zhang ZN (2012) Electrophysiological and behavioral responses of male fall webworm moths (Hyphantria cunea) to herbivory-induced mulberry (Morus alba) leaf volatiles. PLoS One 7:e49256.  https://doi.org/10.1371/journal.pone.0049256 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tóth M, Szarukán I, Dorogi B, Gulyás A, Nagy P, Rozgonyi Z (2010) Male and female noctuid moths attracted to synthetic lures in Europe. J Chem Ecol 36:592–598.  https://doi.org/10.1007/s10886-010-9789-z CrossRefPubMedGoogle Scholar
  42. Varela N, Avilla J, Anton S, Gemeno C (2011) Synergism of pheromone and host-plant volatile blends in the attraction of Grapholita molesta males. Entomol Exp Appl 141:114–122.  https://doi.org/10.1111/j.1570-7458.2011.01171.x CrossRefGoogle Scholar
  43. Wei SJ, Cao LJ, Gong YJ, Shi BC, Wang S, Zhang F, Guo XJ, Wang YM, Chen XX (2015) Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol Ecol 24:4094–4111.  https://doi.org/10.1111/mec.13300 CrossRefPubMedGoogle Scholar
  44. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100.  https://doi.org/10.1007/s10886-009-9737-y CrossRefPubMedGoogle Scholar
  45. Yu H, Feng J, Zhang Q, Xu H (2014) (Z)-3-hexenyl acetate and 1-undecanol increase male attraction to sex pheromone trap in Grapholita molesta (Busck) (Lepidoptera: Tortricidae. Int J Pest Manage 61:30–35.  https://doi.org/10.1080/09670874.2014.986560 CrossRefGoogle Scholar
  46. Zhao ZG, Rong EH, Li SC, Zhang LJ, Kong WN, Hu RS, Zhang JT, Ma RY (2013) Research on the practical parameters of sex pheromone traps for the oriental fruit moth. Pest Manag Sci 69:1181–1186.  https://doi.org/10.1002/ps.3592 CrossRefPubMedGoogle Scholar
  47. Zheng Y, Qiao X, Wang K, Dorn S, Chen M (2015) Population genetics affected by pest management using fruit-bagging: a case study with Grapholita molesta in China. Entomol Exp Appl 156:117–127.  https://doi.org/10.1111/eea.12316 CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2018

Authors and Affiliations

  1. 1.Millennium Nucleus Center in Molecular Ecology and Evolutionary Applications in the Agroecosystems (CEM), Facultad de Ciencias AgrariasUniversidad de TalcaTalcaChile
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain
  3. 3.Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias AgrariasUniversidad Austral de ChileValdiviaChile
  4. 4.Escuela de AgronomíaPontificia Universidad Católica de ValparaísoQuillotaChile
  5. 5.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations