Advertisement

Applied Entomology and Zoology

, Volume 52, Issue 3, pp 379–387 | Cite as

Electroporation-mediated RNA interference reveals a role of the multicopper oxidase 2 gene in dragonfly cuticular pigmentation

  • Genta Okude
  • Ryo FutahashiEmail author
  • Ryouka Kawahara-Miki
  • Kazutoshi Yoshitake
  • Shunsuke Yajima
  • Takema Fukatsu
Original Research Paper

Abstract

Dragonflies are colorful insects, and recent RNA sequencing studies have identified a number of candidate genes potentially involved in their color pattern formation and color vision. However, functional aspects of such genes have not been assessed due to the lack of molecular genetic tools applicable to dragonflies. We established an electroporation-mediated RNA interference (RNAi) procedure using the tiny dragonfly Nannophya pygmaea Rambur, 1842 (Odonata: Libellulidae) that targets the multicopper oxidase 2 gene (MCO2; also known as laccase2 gene) responsible for cuticular pigmentation in many insects. RNA sequencing of N. pygmaea and genomic survey of the dragonfly Ladona fulva identified four multicopper oxidase family genes: MCO1, MCO2, MCO3 and multicopper oxidase-related protein gene (MCORP). In N. pygmaea, MCO2 was specifically expressed around the cuticular pigmentation period, whereas MCO1 was constantly expressed. MCORP was expressed at adult stages, and MCO3 was scarcely expressed. When we applied in vivo electroporation, final instar larvae injected with MCO2 small interfering RNA became adults with patchy unpigmented regions. RNAi without in vivo electroporation did not affect cuticular pigmentation, suggesting that dragonflies do not show a systemic RNAi response. These results indicate that MCO2 is required for cuticular pigmentation across diverse insects, and highlight the usefulness of the electroporation-mediated RNAi method in dragonflies.

Keywords

Nannophya pygmaea Laccase2 gene Gene knockdown Pigment Body color 

Notes

Acknowledgements

We thank Hiroyuki Futahashi for collecting dragonfly samples. We would like to acknowledge i5K, Stephen Richards and Oliver Niehuis for allowing us access to the L. fulva genome data. This work was supported by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research 26660276 and 26711021 (to R. F.), and the Cooperative Research Grant of the Genome Research for BioResource, NODAI Genome Research Center, Tokyo University of Agriculture (to R. F., R. K.-M., and S. Y.). This research is partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) of the Japan Agency for Medical Research and Development.

Supplementary material

13355_2017_489_MOESM1_ESM.mpeg (32.4 mb)
Supplementary material 1 (MPEG 33,154 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alves AP, Lorenzen MD, Beeman RW, Foster JE, Siegfried BD (2010) RNA interference as a method for target-site screening in the western corn rootworm, Diabrotica virgifera virgifera. J Insect Sci 10:162CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ando T, Fujiwara H (2013) Electroporation-mediated somatic transgenesis for rapid functional analysis in insects. Development 140:454–458CrossRefPubMedGoogle Scholar
  4. Andrew RJ, Patankar N (2010) The process of moulting during final emergence of the dragonfly Pantala flavescens (Fabricius) (Anisoptera: Libellulidae). Odonatologica 39:141–148Google Scholar
  5. Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci 102:11337–11342CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chauhan P, Hansson B, Kraaijeveld K, de Knijff P, Svensson EI, Wellenreuther M (2014) De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes. BMC Genom 15:808CrossRefGoogle Scholar
  7. Chauhan P, Wellenreuther M, Hansson B (2016) Transcriptome profiling in the damselfly Ischnura elegans identifies genes with sex-biased expression. BMC Genom 17:985CrossRefGoogle Scholar
  8. Chen L, Wang G, Zhu YN, Xiang H, Wang W (2016) Advances and perspectives in the application of CRISPR/Cas9 in insects. Zool Res 37:220–228PubMedGoogle Scholar
  9. Corbet PS (1999) Dragonflies, behavior and ecology of Odonata. Cornell University Press, IthacaGoogle Scholar
  10. Córdoba-Aguilar A (2008) Dragonflies and damselflies: model organisms for ecological and evolutionary research. Oxford University Press, OxfordCrossRefGoogle Scholar
  11. Daimon T, Kiuchi T, Takasu Y (2014) Recent progress in genome engineering techniques in the silkworm, Bombyx mori. Dev Growth Differ 56:14–25CrossRefPubMedGoogle Scholar
  12. Dittmer NT, Kanost MR (2010) Insect multicopper oxidases: diversity, properties, and physiological roles. Insect Biochem Mol Biol 40:179–188CrossRefPubMedGoogle Scholar
  13. Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito Anopheles gambiae. Insect Biochem Mol Biol 34:29–41CrossRefPubMedGoogle Scholar
  14. Elias-Neto M, Soares MPM, Simões ZLP, Hartfelder K, Bitondi MMG (2010) Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae). Insect Biochem Mol Biol 40:241–251CrossRefPubMedGoogle Scholar
  15. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  16. Fujiwara H, Nishikawa H (2016) Functional analysis of genes involved in color pattern formation in Lepidoptera. Curr Opin Insect Sci 17:16–23CrossRefPubMedGoogle Scholar
  17. Futahashi R (2016) Color vision and color formation in dragonflies. Curr Opin Insect Sci 17:32–39CrossRefPubMedGoogle Scholar
  18. Futahashi R, Banno Y, Fujiwara H (2010) Caterpillar color patterns are determined by a two-phase melanin gene prepatterning process: new evidence from tan and laccase2. Evol Dev 12:157–167CrossRefPubMedGoogle Scholar
  19. Futahashi R, Tanaka K, Matsuura Y, Tanahashi M, Kikuchi Y, Fukatsu T (2011) Laccase2 is required for cuticular pigmentation in stinkbugs. Insect Biochem Mol Biol 41:191–196CrossRefPubMedGoogle Scholar
  20. Futahashi R, Kurita R, Mano H, Fukatsu T (2012) Redox alters yellow dragonflies into red. Proc Natl Acad Sci 109:12626–12631CrossRefPubMedPubMedCentralGoogle Scholar
  21. Futahashi R, Kawahara-Miki R, Kinoshita M, Yoshitake K, Yajima S, Arikawa K, Fukatsu T (2015) Extraordinary diversity of visual opsin genes in dragonflies. Proc Natl Acad Sci 112:E1247–E1256CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gorman MJ, Dittmer NT, Marshall JL, Kanost MR (2008) Characterization of the multicopper oxidase gene family in Anopheles gambiae. Insect Biochem Mol Biol 38:817–824CrossRefPubMedPubMedCentralGoogle Scholar
  23. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lang M, Braun CL, Kanost MR, Gorman MJ (2012) Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster. Proc Natl Acad Sci 109:13337–13342CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 (q-bio.GN)
  26. Liu J, Lemonds TR, Popadić A (2014) The genetic control of aposematic black pigmentation in hemimetabolous insects: insights from Oncopeltus fasciatus. Evol Dev 16:270–277CrossRefPubMedPubMedCentralGoogle Scholar
  27. Masuoka Y, Maekawa K (2016) Gene expression changes in the tyrosine metabolic pathway regulate caste-specific cuticular pigmentation of termites. Insect Biochem Mol Biol 74:21–31CrossRefPubMedGoogle Scholar
  28. Masuoka Y, Miyazaki S, Saiki R, Tsuchida T, Maekawa K (2013) High Laccase2 expression is likely involved in the formation of specific cuticular structures during soldier differentiation of the termite Reticulitermes speratus. Arthropod Struct Dev 42:469–475CrossRefPubMedGoogle Scholar
  29. Matsuura Y, Kikuchi Y, Miura T, Fukatsu T (2015) Ultrabithorax is essential for bacteriocyte development. Proc Natl Acad Sci 112:9376–9381CrossRefPubMedPubMedCentralGoogle Scholar
  30. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767CrossRefPubMedGoogle Scholar
  31. Mito T, Nakamura T, Bando T, Ohuchi H, Noji S (2010) The advent of RNA interference in entomology. Entomol Sci 14:1–8CrossRefGoogle Scholar
  32. Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2009) siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinf 10:392CrossRefGoogle Scholar
  33. Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, Sugano S, Fujiyama A, Kosugi S, Hirakawa H, Tabata S, Ozaki K, Morimoto H, Ihara K, Obara M, Hori H, Itoh T, Fujiwara H (2015) A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat Genet 47:405–409CrossRefPubMedGoogle Scholar
  34. Niu BL, Shen WF, Liu Y, Weng HB, He LH, Mu JJ, Wu ZL, Jiang P, Tao YZ, Meng ZQ (2008) Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer Monochamus alternatus. Insect Mol Biol 17:303–312CrossRefPubMedGoogle Scholar
  35. Osanai-Futahashi M, Tatematsu KI, Futahashi R, Narukawa J, Takasu Y, Kayukawa T, Shinoda T, Ishige T, Yajima S, Tamura T, Yamamoto K, Sezutsu H (2016) Positional cloning of a Bombyx pink-eyed white egg locus reveals the major role of cardinal in ommochrome synthesis. Heredity 116:135–145CrossRefPubMedGoogle Scholar
  36. Ozono A, Kawashima I, Futahashi R (2012) Dragonflies of Japan. Bunichi-Sogo Syuppan, TokyoGoogle Scholar
  37. Peng Z, Green PG, Arakane Y, Kanost MR, Gorman MJ (2014) A multicopper oxidase-related protein is essential for insect viability, longevity and ovary development. PLoS One 9:e111344CrossRefPubMedPubMedCentralGoogle Scholar
  38. Peng Z, Dittmer NT, Lang M, Brummett LM, Braun CL, Davis LC, Kanost MR, Gorman MJ (2015) Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity. Insect Biochem Mol Biol 59:58–71CrossRefPubMedPubMedCentralGoogle Scholar
  39. Riedel F, Vorkel D, Eaton S (2011) Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle. Development 138:149–158CrossRefPubMedGoogle Scholar
  40. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  41. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  42. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  43. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245CrossRefPubMedGoogle Scholar
  44. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinf 14:178–192CrossRefGoogle Scholar
  45. Tillyard RJ (1917) The biology of dragonflies. Cambridge University Press, CambridgeGoogle Scholar
  46. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yamaguchi J, Mizoguchi T, Fujiwara H (2011) siRNAs induce efficient RNAi response in Bombyx mori embryos. PLoS One 6:e25469CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yatsu J, Asano T (2009) Cuticle laccase of the silkworm, Bombyx mori: purification, gene identification and presence of its inactive precursor in the cuticle. Insect Biochem Mol Biol 39:254–262CrossRefPubMedGoogle Scholar
  49. Ye YX, Pan PL, Kang D, Lu JB, Zhang CX (2015) The multicopper oxidase gene family in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 63:124–132CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2017

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of ScienceUniversity of TokyoBunkyo-kuJapan
  2. 2.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.NODAI Genome Research CenterTokyo University of AgricultureSetagaya-kuJapan
  4. 4.Japan Software Management Company LimitedYokohamaJapan
  5. 5.Department of BioscienceTokyo University of AgricultureSetagaya-kuJapan
  6. 6.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations