Relationship between temperature and development rate of Copitarsia incommoda (Lepidoptera: Noctuidae) in the Bolivian Andes

Abstract

The relationship between temperature and development rate of Copitarsia incommoda Walker (Lepidoptera: Noctuidae), a major pest of the quinoa crop in the Andes, was investigated using eight constant temperatures from 5.1 to 34.6 °C, on an artificial diet under laboratory conditions. We used a Gauss model to fit the survival rate, and the Holling type III, the Wang, and the Sharpe and DeMichele models to fit the different development rates for each life stage, among 25 models investigated and compared. Optimum temperatures for survival were between 13.2 and 27.1 °C, and optimum temperatures for development were between 19.1 and 31.9 °C. We used the development rate models with a large-scale temperature database to predict and map the risk of outbreaks once C. incommoda invades, using the number of generations per year, revealing that the pest was univoltine or bivoltine in most Bolivian regions of quinoa production. While temperatures from this database underestimate the temperatures experienced by the pest, this study provides a new insight into C. incommoda physiology, which should be a key factor in designing integrated pest management strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Akaike H (2011) Akaike’s information criterion. International encyclopedia of statistical science. Springer, Berlin, Heidelberg, p 25

    Google Scholar 

  2. Andersen JL, Manenti T, Sørensen JG, MacMillan HA, Loeschcke V, Overgaard J (2015) How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct Ecol 29:55–65

    Article  Google Scholar 

  3. Belozerov V (2009) New aspects in investigations of diapause and non-diapause dormancy types in insects and other arthropods. Entomol Rev 89:127–136

    Article  Google Scholar 

  4. Bennie J, Wilson RJ, Maclean IMD, Suggitt AJ (2014) Seeing the woods for the trees—when is microclimate important in species distribution models? Glob Change Biol 20:2699–2700. doi:10.1111/gcb.12525

    Article  Google Scholar 

  5. Campbell A, Frazer B, Gilbert N et al (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

  6. Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  7. Crespo-Pérez V, Rebaudo F, Silvain J-F, Dangles O (2011) Modeling invasive species spread in complex landscapes: the case of potato moth in Ecuador. Landsc Ecol 26:1447–1461

    Article  Google Scholar 

  8. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. doi:10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  9. Faye E, Herrera M, Bellomo L et al (2014) Strong discrepancies between local temperature mapping and interpolated climatic grids in tropical mountainous agricultural landscapes. PLoS One 9:e105541. doi:10.1371/journal.pone.0105541

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flores-Perez L, Bautista-Martinez N, Vera-Graziano J et al (2004) Life cycle and survival and reproduction rates of Copitarsia incommoda Walker (Lepidoptera: Noctuidae) in three cultivars of Brassica oleracea L. Agrociencia 38:517–523

    Google Scholar 

  11. Genc H (2005) Determination of sex in pupae of Phyciodes phaon (Lepidoptera: Nymphalidae). Florida Entomologist 88:536–537

    Article  Google Scholar 

  12. Gould J, Venette R, Winograd D (2005) Effect of temperature on development and population parameters of Copitarsia decolora (Lepidoptera: Noctuidae). Environ Entomol 34:548–556

    Article  Google Scholar 

  13. Gould J, Simmons R, Venette R, Peña J (2013) Copitarsia spp.: biology and risk posed by potentially invasive lepidoptera from South and Central America. Potential Invasive Pests Agric Crops 3:160

    Article  Google Scholar 

  14. Hannah L, Flint L, Syphard AD et al (2014) Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol 29:390–397

    Article  PubMed  Google Scholar 

  15. Harcourt D, Yee J (1982) Polynomial algorithm for predicting the duration of insect life stages. Environ Entomol 11:581–584

    Article  Google Scholar 

  16. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  17. Hilbert DW, Logan JA (1983) Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ Entomol 12:1–5

    Article  Google Scholar 

  18. Jallow MF, Matsumura M (2001) Influence of temperature on the rate of development of Helicoverpa armigera (Huebner) (Lepidoptera: Noctuidae). Appl Entomol Zool 36:427–430

    Article  Google Scholar 

  19. Kearney MR, Isaac AP, Porter WP (2014) microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Sci data 1:140006

  20. Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 33:1–11

    Article  Google Scholar 

  21. Lamb R (1992) Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implications for estimating rate parameters for insects. Environ Entomol 21:10–19

    Article  Google Scholar 

  22. Laudien H (1973) Changing reaction systems. In: Precht H, Christopherson J Larcher H (eds) Temp Life. Springer, New York, pp 355–399

  23. Ma G, Hoffmann AA, Ma C-S (2015) Daily temperature extremes play an important role in predicting thermal effects. J Exp Biol 218:2289–2296. doi:10.1242/jeb.122127

    Article  PubMed  Google Scholar 

  24. Marshall KE, Sinclair BJ (2015) The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect. Funct Ecol 29:357–366

    Article  Google Scholar 

  25. Moore JL, Remais JV (2014) Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues. Acta Biotheor 62:69–90. doi:10.1007/s10441-014-9209-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murúa MG, Virla EG, Defagó V (2003) Evaluación de cuatro dietas artificiales para la cría de Spodopetera frugiperda (Lep.: Noctuidae) destinada a mantener poblaciones experimentales de himenópteros parasitoide. Boletín de sanidad vegetal. Plagas 2:43–51 (in Spanish)

    Google Scholar 

  27. Nabeta FH, Nakai M, Kunimi Y (2005) Effects of temperature and photoperiod on the development and reproduction of Adoxophyes honmai (Lepidoptera: Tortricidae). Appl Entomol Zool 40:231–238

    Article  Google Scholar 

  28. Pogue MG (2011) Larval description of Copitarsia incommoda (Lepidoptera: Noctuidae). Ann Entomol Soc Am 104:1292–1296. doi:10.1603/AN10099

    Article  Google Scholar 

  29. Quimbayo N, Serna F, Olivares TS, Angulo AO (2010) Noctuids (Lepidoptera) in Colombian flower crops. Rev Colomb Entomol 36:38–46

    Google Scholar 

  30. Rebaudo F, Dangles O (2011) Coupled information diffusion–pest dynamics models predict delayed benefits of farmer cooperation in pest management programs. PLoS Comput Biol 7:e1002222

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Rebaudo F, Struelens Q (2016) devRate: quantify relationship between developmental rate and temperature in Ectotherms. R CRAN package, version 0.1.0

  32. Rebaudo F, Faye E, Dangles O (2016) Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures. Front Physiol. doi:10.3389/fphys.2016.00139

    PubMed  PubMed Central  Google Scholar 

  33. Rojas JM, Castillo SB, Folguera G et al (2014) Coping with daily thermal variability: behavioural performance of an ectotherm model in a warming world. PLoS One 9:e106897

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rondon SI, Xue L (2010) Practical techniques and accuracy for sexing the potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Florida Entomol 93:113–115

    Article  Google Scholar 

  35. Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ Entomol 31:177–187

    Article  Google Scholar 

  36. Rueda DF, López-Ávila A (2004) Dimorfismo sexual en pupas de Tecia solanivora (Povolný) (Lepidoptera: Gelechiidae). Revista Corpoica: Ciencia y Tecnología Agropecuaria 5:41–42 (in Spanish)

    Google Scholar 

  37. Saravia R, Plata G, Gandarillas A (2014) Plagas y Enfermedades del cultivo de Quinua. Cochabamba, Bolivia, Fundacion PROINPA. p 148 (in Spanish)

  38. Saravia R, Quispe R (2003) Biología y comportamiento de la polilla de la quinua. PROINPA, Bolivia (in Spanish)

    Google Scholar 

  39. Scheffers BR, Edwards DP, Diesmos A et al (2014) Microhabitats reduce animals’ exposure to climate extremes. Glob Change Biol 20:495–503. doi:10.1111/gcb.12439

    Article  Google Scholar 

  40. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416. doi:10.1111/j.1365-2699.2010.02407.x

    Article  Google Scholar 

  41. Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670. doi:10.1016/0022-5193(77)90265-X

    CAS  Article  PubMed  Google Scholar 

  42. Simmons RB, Pogue MG (2004) Redescription of two often-confused noctuid pests, Copitarsia decolora and Copitarsia incommoda (Lepidoptera: Noctuidae: Cuculliinae). Ann Entomol Soc Am 97:1159–1164

    Article  Google Scholar 

  43. Simmons RB, Pogue MG, Scheffer SJ (2003) What is Coptitarsia (Lepidoptera: Noctuidae)? Mistaken identity, misplacement, and other quandaries. In The 2003 ESA Annual Meeting and Exhibition

  44. Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong Y, Harley CD, Marshall DJ, Helmuth BS (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19:1372–1385

    Article  PubMed  Google Scholar 

  45. Sporleder M, Schaub B, Aldana G, Kroschel J (2016) Temperature-dependent phenology and growth potential of the Andean potato tuber moth, Symmetrischema tangolias (Gyen) (Lep., Gelechiidae). J Appl Entomol. doi:10.1111/jen.12321

    Google Scholar 

  46. Storlie C, Merino-Viteri A, Phillips B et al (2014) Stepping inside the niche: microclimate data are critical for accurate assessment of species’ vulnerability to climate change. Biol Lett 10:20140576

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suzaki Y, Okada K (2016) Developmental characteristics of the seed bug Graptostethus servus (Hemiptera: Lygaeidae) at different temperatures. Appl Entomol Zool 51:555–560. doi:10.1007/s13355-016-043

    Article  Google Scholar 

  48. Taylor F (1981) Ecology and evolution of physiological time in insects. Am Nat 117:1–23

  49. Venette RC, Gould JR (2006) A pest risk assessment for Copitarsia spp., insects associated with importation of commodities into the United States. Euphytica 148:165–183

    Article  Google Scholar 

  50. Wang R, Lan Z, Ding Y (1982) Studies on mathematical models of the relationship between insect development and temperature. Acta Ecol Sin 2:47–57

    CAS  Google Scholar 

  51. Yukawa J, Ichinose M, Kim W et al (2016) Lower development threshold temperatures and thermal constants for four species of Asphondylia (Diptera: Cecidomyiidae) in Japan and their larval developmental delay caused by heat stress. Appl Entomol Zool 51:71–80. doi:10.1007/s13355-015-0372-5

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and two anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Rebaudo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rebaudo, F., Struelens, Q., Callizaya Condori, F. et al. Relationship between temperature and development rate of Copitarsia incommoda (Lepidoptera: Noctuidae) in the Bolivian Andes. Appl Entomol Zool 52, 313–320 (2017). https://doi.org/10.1007/s13355-017-0480-5

Download citation

Keywords

  • Temperature
  • Development
  • Survival
  • Quinoa
  • Bolivia