Applied Entomology and Zoology

, Volume 48, Issue 3, pp 373–378

Incidence of resistance to neonicotinoid insecticides in greenhouse populations of the whitefly, Trialeurodesvaporariorum (Hemiptera: Aleyrodidae) from Greece

  • Maria L. Pappas
  • Foteini Migkou
  • George D. Broufas
Original Research Paper

Abstract

The greenhouse whitefly, Trialeurodesvaporariorum Westwood, is an important pest of field and greenhouse crops of horticultural and ornamental plants. In integrated pest management programs its control is mainly based on the release of biological control agents and application of chemical insecticides. Neonicotinoids are relatively new chemicals currently applied for the chemical control of T. vaporariorum. However, cases of development of insecticide resistance to neonicotinoids have already been reported. The state of resistance to neonicotinoid insecticides for populations of the greenhouse whitefly in Greece is currently unknown. The objective of our study was to screen a number of whitefly populations for resistance to the neonicotinoids imidacloprid and thiacloprid. Seven whitefly populations were collected from tomato greenhouse crops from different areas of central and northern Greece. LC50 values were estimated for all populations following the method proposed by the Insecticide Resistance Action Committee (IRAC). The development of resistance to both neonicotinoids was confirmed for all tested populations with resistance ratios ranging from 1.5 to 4.4-fold and from 1.4 to 12.2-fold for imidacloprid and thiacloprid, respectively. We discuss our results with regard to the development of neonicotinoid resistance in T. vaporariorum populations and its implications for whitefly control.

Keywords

Greenhouse whitefly Neonicotinoids Insecticide resistance Imidacloprid Thiacloprid 

References

  1. Anonymous (2009) IRAC susceptibility test methods series, Method No. 015. http://www.irac-online.org
  2. Basit M, Saeed S, Saleem MA, Sayyed AH (2013) Can resistance in Bemisia tabaci (Homoptera: Aleyrodidae) be overcome with mixtures of neonicotinoids and insect growth regulators? Crop Prot 44:135–141CrossRefGoogle Scholar
  3. Bi JL, Toscano NC (2007) Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in southern California. Pest Manag Sci 63(8):747–752CrossRefPubMedGoogle Scholar
  4. Cahill M, Gorman K, Day S, Denholm I, Elbert A, Nauen R (1996) Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86(4):343–349CrossRefGoogle Scholar
  5. Capinera JL (2008) Greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, pp 1723–1726CrossRefGoogle Scholar
  6. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64(11):1099–1105CrossRefPubMedGoogle Scholar
  7. Fernández E, Grávalos C, Haro PJ, Cifuentes D, Bielza P (2009) Insecticide resistance status of Bemisia tabaci Q-biotype in south-eastern Spain. Pest Manag Sci 65(8):885–891CrossRefPubMedGoogle Scholar
  8. Gorman K, Hewitt F, Denholm I, Devine GJ (2002) New developments in insecticide resistance in the glasshouse whitefly (Trialeurodes vaporariorum) and the two-spotted spider mite (Tetranychus urticae) in the UK. Pest Manag Sci 58(2):123–130CrossRefPubMedGoogle Scholar
  9. Gorman K, Devine G, Bennison J, Coussons P, Punchard N, Denholm I (2007) Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest Manag Sci 63(6):555–558CrossRefPubMedGoogle Scholar
  10. Houndété TA, Kétoh GK, Hema OSA, Brévault T, Glitho IA, Martin T (2010) Insecticide resistance in field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in West Africa. Pest Manag Sci 66(11):1181–1185CrossRefPubMedGoogle Scholar
  11. Karatolos N, Denholm I, Williamson M, Nauen R, Gorman K (2010) Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Manag Sci 66(12):1304–1307CrossRefPubMedGoogle Scholar
  12. Liang P, Cui JZ, Yang XQ, Gao XW (2007) Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum. Pest Manag Sci 63(4):365–371CrossRefPubMedGoogle Scholar
  13. Longhurst C, Babcock JM, Denholm I, Gorman K, Thomas JD, Sparks TC (2012) Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum. Pest Manag Sci 69:809–813CrossRefPubMedGoogle Scholar
  14. Margaritopoulos JT, Skouras PJ, Nikolaidou P, Manolikaki J, Maritsa K, Tsamandani K, Kanavaki OM, Bacandritsos N, Zarpas KD, Tsitsipis JA (2007) Insecticide resistance status of Myzus persicae (Hemiptera: Aphididae) populations from peach and tobacco in mainland Greece. Pest Manag Sci 63(8):821–829CrossRefPubMedGoogle Scholar
  15. Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58(4):200–215CrossRefPubMedGoogle Scholar
  16. Nauen R, Elbert A (2003) European monitoring of resistance to insecticides in Myzus persicae and Aphis gossypii (Hemiptera: Aphididae) with special reference to imidacloprid. Bull Entomol Res 93(1):47–54CrossRefPubMedGoogle Scholar
  17. Nauen R, Stumpf N, Elbert A (2002) Toxicological and mechanistic studies on neonicotinoid cross-resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 58(9):868–875CrossRefPubMedGoogle Scholar
  18. Prabhaker N, Castle S, Henneberry TJ, Toscano NC (2005) Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 95(6):535–543CrossRefPubMedGoogle Scholar
  19. Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS, Williamson MS, Bass C (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 6(6):e1000999. doi:10.1371/journal.pgen.1000999
  20. Roditakis E, Roditakis NE, Tsagkarakou A (2005) Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete. Pest Manag Sci 61(6):577–582CrossRefPubMedGoogle Scholar
  21. Roditakis E, Grispou M, Morou E, Kristoffersen JB, Roditakis N, Nauen R, Vontas J, Tsagkarakou A (2009) Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest Manag Sci 65(3):313–322CrossRefPubMedGoogle Scholar
  22. Roditakis E, Morou E, Tsagkarakou A, Riga M, Nauen R, Paine M, Morin S, Vontas J (2011) Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross-metabolism potential of the recombinant enzyme. Insect Sci 18(1):23–29CrossRefGoogle Scholar
  23. Rodríguez MA, Marques T, Bosch D, Avilla J (2011) Assessment of insecticide resistance in eggs and neonate larvae of Cydia pomonella (Lepidoptera: Tortricidae). Pestic Biochem Physiol 100(2):151–159CrossRefGoogle Scholar
  24. Schuster DJ, Mann RS, Toapanta M, Cordero R, Thompson S, Cyman S, Shurtleff A, Morris RF (2010) Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manag Sci 66(2):186–195PubMedGoogle Scholar
  25. SPSS Inc (2010) IBM SPSS Statistics Base 19, Copyright SPSS Inc. 1989Google Scholar
  26. Van Lenteren JC (1995) Integrated pest management in protected crops. In: Dent D (ed) Integrated pest management. Chapman & Hall, London, pp 311–343Google Scholar
  27. Van Lenteren JC, Martin NA (2000) Biological control of whiteflies. In: Albajes R, Gullino M, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Publishers, Dordrecht, pp 202–214Google Scholar
  28. Vassiliou V, Emmanouilidou M, Perrakis A, Morou E, Vontas J, Tsagkarakou A, Roditakis E (2011) Insecticide resistance in Bemisia tabaci from Cyprus. Insect Sci 18(1):30–39CrossRefGoogle Scholar
  29. Voudouris CC, Sauphanor B, Franck P, Reyes M, Mamuris Z, Tsitsipis JA, Vontas J, Margaritopoulos JT (2011) Insecticide resistance status of the codling moth Cydia pomonella (Lepidoptera: Tortricidae) from Greece. Pestic Biochem Physiol 100(3):229–238CrossRefGoogle Scholar
  30. Wang Y, Chen J, Yu CZ, Ma C, Huang Y, Shen J (2008) Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Pest Manag Sci 64(12):1278–1284PubMedGoogle Scholar
  31. Wang Z, Yan H, Yang Y, Wu Y (2010) Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Manag Sci 66(12):1360–1366CrossRefPubMedGoogle Scholar
  32. Wang Y, Chen L, Yu R, Zhao X, Wu C, Cang T, Wang Q (2012a) Insecticide toxic effects on Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Pest Manag Sci 68(12):1564–1571CrossRefPubMedGoogle Scholar
  33. Wang Y, Yu R, Zhao X, Chen L, Wu C, Cang T, Wang Q (2012b) Susceptibility of adult Trichogramma nubilale (Hymenoptera: Trichogrammatidae) to selected insecticides with different modes of action. Crop Prot 34:76–82CrossRefGoogle Scholar
  34. Wang Y, Chen L, An X, Jiang J, Wang Q, Cai L, Zhao X (2013) Susceptibility to selected insecticides and risk assessment in the insect egg parasitoid Trichogramma confusum (Hymenoptera: Trichogrammatidae). J Econ Entomol 106(1):142–149CrossRefPubMedGoogle Scholar
  35. Zhao X, Wu C, Wang Y, Cang T, Chen L, Yu R, Wang Q (2012) Assessment of toxicity risk of insecticides used in rice ecosystem on Trichogramma japonicum, an egg parasitoid of rice lepidopterans. J Econ Entomol 105(1):92–101CrossRefPubMedGoogle Scholar
  36. Zimmer CT, Nauen R (2011) Pyrethroid resistance and thiacloprid baseline susceptibility of European populations of Meligethes aeneus (Coleoptera: Nitidulidae) collected in winter oilseed rape. Pest Manag Sci 67(5):599–608CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2013

Authors and Affiliations

  • Maria L. Pappas
    • 1
  • Foteini Migkou
    • 1
  • George D. Broufas
    • 1
  1. 1.Laboratory of Agricultural Entomology and Zoology, Department of Agricultural DevelopmentDemocritus University of ThraceOrestiadaGreece

Personalised recommendations