Applied Entomology and Zoology

, Volume 48, Issue 3, pp 301–311 | Cite as

Identification and expression profile analysis of odorant-binding protein genes in Apolygus lucorum (Hemiptera: Miridae)

  • Ping Ji
  • Shao-Hua Gu
  • Jing-Tao Liu
  • Xiao-Qiang Zhu
  • Yu-Yuan Guo
  • Jing-Jiang Zhou
  • Yong-Jun Zhang
Original Research Paper

Abstract

Insect odorant-binding proteins (OBPs) are one group of olfactory-related proteins and are believed to play essential roles in the physiological activity of insects. In this study, we constructed a cDNA library from the antennae of Apolygus lucorum (Meyer-Dür). Twelve novel putative OBP genes were identified from the antennal cDNA library, and the expression profiles of the 12 OBPs in different tissues (antennae, heads, thoraxes, abdomens, legs and wings) were analyzed by real-time quantitative PCR. The results revealed that AlucOBP2, AlucOBP7, AlucOBP8, AlucOBP11 and AlucOBP12 are highly expressed in antennae. Especially the transcript levels of AlucOBP7, AlucOBP8 and AlucOBP11 in male antennae were significantly higher than in female antennae, suggesting their potential olfactory functions in host seeking and mate finding of A. lucorum. However, AlucOBP1, AlucOBP5 and AlucOBP6 were highly expressed in the heads, whereas AlucOBP3 was specifically expressed only in the legs. In addition, AlucOBP4, AlucOBP9 and AlucOBP10 were expressed in almost all chemosensory tissues (antennae, heads, wings and legs). Our research is meaningful for understanding the molecular basis of the insect chemoreception requirements and provides valuable target genes to control the insect pests.

Keywords

Apolygus lucorum Antennal cDNA library Odorant-binding proteins Expression profiles Olfaction 

Notes

Acknowledgments

This work was supported by the China National “973” Basic Research Program (2012CB114104), the National Natural Science Foundation of China (31071694 and 31272048). We also acknowledge the financial support from the Royal Society, UK, for the international joint project between China and the UK (31111130203; JP100849) and BBSRC International Partnering Award (BB/J020281).

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedGoogle Scholar
  2. Andronopoulou E, Labropoulou V, Douris V, Woods DF, Biessmann H, Iatrou K (2006) Specific interactions among odorant-binding proteins of the African malaria vector Anopheles gambiae. Insect Mol Biol 15(6):797–811CrossRefPubMedGoogle Scholar
  3. Bendtsen JD, Nielsen H, vonHeijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795CrossRefPubMedGoogle Scholar
  4. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136(1):149–162CrossRefPubMedGoogle Scholar
  5. Fan J, Francis F, Liu Y, Chen JL, Cheng DF (2011) An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res 10(4):3056–3069CrossRefPubMedGoogle Scholar
  6. Fitt GP, Mares CL, Llewellyn DJ (1994) Field evaluation and potential ecological impact of transgenic cottons (Gossypium hirsutum) in Australia. Biocontrol Sci Tech 4(4):535–548CrossRefGoogle Scholar
  7. Foret S, Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16(11):1404–1413CrossRefPubMedGoogle Scholar
  8. Galindo K, Smith DP (2001) A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 159(3):1059–1072PubMedGoogle Scholar
  9. Gu SH, Wang SP, Zhang XY, Wu KM, Guo YY, Zhou JJ, Zhang YJ (2011a) Identification and tissue distribution of odorant binding protein genes in the lucerne plant bug Adelphocoris lineolatus (Goeze). Insect Biochem Mol Biol 41(4):254–263CrossRefPubMedGoogle Scholar
  10. Gu SH, Wang WX, Wang GR, Zhang XY, GuO YY, Zhang ZD, Zhou JJ, Zhang YJ (2011b) Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, Adelphocoris lineolatus (GOEZE). Arch Insect Biochem Physiol 77(2):81–99CrossRefPubMedGoogle Scholar
  11. Hekmat-Scafe DS, Scafe CR, Mckinney AJ, Tanouye MA (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12(9):1357–1369CrossRefPubMedGoogle Scholar
  12. Hua JF, Zhang S, Cui JJ, Wang DJ, Wang CY, Luo JY, Lv LM (2012) Identification and binding characterization of three odorant binding proteins and one chemosensory protein from Apolygus lucorum (Meyer-Dur). J Chem Ecol 38:1163–1170CrossRefPubMedGoogle Scholar
  13. Koganezawa M, Shimada I (2002) Novel odorant-binding proteins expressed in the taste tissue of the fly. Chem Senses 27(4):319–332CrossRefPubMedGoogle Scholar
  14. Krieger J, Breer H (1999) Olfactory reception in invertebrates. Science 286(5440):720–723CrossRefPubMedGoogle Scholar
  15. Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446(7135):542–546CrossRefPubMedGoogle Scholar
  16. Lagarde A, Spinelli S, Qiao H, Tegoni M, Pelosi P, Cambillau C (2011) Crystal structure of a novel type of odorant-binding protein from Anopheles gambiae, belonging to the C-plus class. Biochem J 437(3):423–430CrossRefPubMedGoogle Scholar
  17. Laughlin JD, Ha TS, Jones DN, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133(7):1255–1265CrossRefPubMedGoogle Scholar
  18. Legeai F, Malpel S, Montagne N, Monsempes C, Cousserans F, Merlin C, Francois MC, Maibeche-Coisne M, Gavory F, Poulain J et al (2011) An expressed sequence tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics 12:86CrossRefPubMedGoogle Scholar
  19. Liu R, Lehane S, He X, Lehane M, Hertz-Fowler C, Berriman M, Pickett JA, Field LM, Zhou JJ (2010) Characterisations of odorant-binding proteins in the tsetse fly Glossina morsitans morsitans. Cell Mol Life Sci 67(6):919–929CrossRefPubMedGoogle Scholar
  20. Liu R, He X, Lehane S, Lehane M, Hertz-Fowler C, Berriman M, Field LM, Zhou JJ (2012) Expression of chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to female host-seeking behaviour. Insect Mol Biol 21(1):41–48CrossRefPubMedGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct Method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  22. Long AD, Beldade P, Macdonald SJ (2007) Estimation of population heterozygosity and library construction-induced mutation rate from expressed sequence tag collections. Genetics 176(1):711–714CrossRefPubMedGoogle Scholar
  23. Lu YH, Wu KM (2008) Biology and control of the mirids. Golden Shield Press, BeijingGoogle Scholar
  24. Lu YH, Wu KM, Guo YY (2007) Flight potential of Lygus lucorum (Meyer-Dur) (Heteroptera: Miridae). Environ Entomol 36(5):1007–1013CrossRefPubMedGoogle Scholar
  25. Lu YH, Qiu F, Feng HQ, Li HB, Yang ZC, Wyckhuys KAG, Wu KM (2008) Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt Cotton in China. Crop Protection 27(3–5):465–472CrossRefGoogle Scholar
  26. Nagaraj SH, Gasser RB, Ranganathan S (2007) A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 8(1):6–21CrossRefPubMedGoogle Scholar
  27. Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29(3):199–228CrossRefPubMedGoogle Scholar
  28. Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Physiol B: Biochem Mol Biol 111(3):503–514CrossRefGoogle Scholar
  29. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63(14):1658–1676CrossRefPubMedGoogle Scholar
  30. Robertson HM, Martos R, Sears CR, Todres EZ, Walden KK, Nardi JB (1999) Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol Biol 8(4):501–518CrossRefPubMedGoogle Scholar
  31. Rutzler M, Zwiebel LJ (2005) Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(9):777–790CrossRefPubMedGoogle Scholar
  32. SAS Institute (1988) SAS/STAT User’s Guide, Release 6.03. SAS Institute, CaryGoogle Scholar
  33. Saveer AM, Kromann SH, Birgersson G, Bengtsson M, Lindblom T, Balkenius A, Hansson BS, Witzgall P, Becher PG, Ignell R (2012) Floral to green: mating switches moth olfactory coding and preference. Proc Biol Sci 279:2314–2322CrossRefPubMedGoogle Scholar
  34. Schultze A, Schymura D, Forstner M, Krieger J (2012) Expression pattern of a ‘Plus-C’ class odorant binding protein in the antenna of the malaria vector Anopheles gambiae. Insect Mol Biol 21(2):187–195CrossRefPubMedGoogle Scholar
  35. Sun YL, Huang LQ, Pelosi P, Wang CZ (2012) Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species. PLoS ONE 7(1):e30040CrossRefPubMedGoogle Scholar
  36. Swarup S, Williams TI, Anholt RR (2011) Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav 10(6):648–657CrossRefPubMedGoogle Scholar
  37. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599CrossRefPubMedGoogle Scholar
  38. Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29(5):257–264CrossRefPubMedGoogle Scholar
  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882CrossRefPubMedGoogle Scholar
  40. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293(5828):161–163CrossRefPubMedGoogle Scholar
  41. Vogt RG, Prestwich GD, Lerner MR (1991) Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 22(1):74–84CrossRefPubMedGoogle Scholar
  42. Vogt RG, Callahan FE, Rogers ME, Dickens JC (1999) Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem Senses 24(5):481–495CrossRefPubMedGoogle Scholar
  43. Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E (2004) Analysis of the insect os-d-like gene family. J Chem Ecol 30(5):889–911CrossRefPubMedGoogle Scholar
  44. Wojtasek H, Leal WS (1999) Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem 274(43):30950–30956CrossRefPubMedGoogle Scholar
  45. Wu KM, Guo YY (2005) The evolution of cotton pest management practices in China. Annu Rev Entomol 50:31–52CrossRefPubMedGoogle Scholar
  46. Wu KM, Li WD, Feng HQ, Guo YY (2002) Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China. Crop Protection 21(10):997–1002CrossRefGoogle Scholar
  47. Xu PX, Zwiebel LJ, Smith DP (2003) Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 12(6):549–560CrossRefPubMedGoogle Scholar
  48. Xu P, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45(2):193–200CrossRefPubMedGoogle Scholar
  49. Zhang TT, Gu SH, Wu KM, Zhang YJ, Guo YY (2011) Construction and analysis of cDNA libraries from the antennae of male and female cotton bollworms Helicoverpa armigera (Hubner) and expression analysis of putative odorant-binding protein genes. Biochem Biophys Res Commun 407(2):393–399CrossRefPubMedGoogle Scholar
  50. Zhou JJ, Huang W, Zhang GA, Pickett JA, Field LM (2004) “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327(1):117–129CrossRefPubMedGoogle Scholar
  51. Zhou JJ, He XL, Pickett JA, Field LM (2008) Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol Biol 17(2):147–163CrossRefPubMedGoogle Scholar
  52. Zhou JJ, Vieira FG, He XL, Smadja C, Liu R, Rozas J, Field LM (2010a) Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol Biol 19(Suppl 2):113–122CrossRefPubMedGoogle Scholar
  53. Zhou JJ, Field LM, He XL (2010b) Insect odorant-binding proteins: do they offer an alternative pest control strategy? Outlooks on Pest Management 21:31–34CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2013

Authors and Affiliations

  • Ping Ji
    • 1
  • Shao-Hua Gu
    • 1
  • Jing-Tao Liu
    • 1
    • 2
  • Xiao-Qiang Zhu
    • 1
  • Yu-Yuan Guo
    • 1
  • Jing-Jiang Zhou
    • 3
  • Yong-Jun Zhang
    • 1
  1. 1.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
  2. 2.College of Plant ProtectionShandong Agricultural UniversityTai’anChina
  3. 3.Department of Biological ChemistryRothamsted ResearchHarpendenUK

Personalised recommendations