A mitochondrial carrier gene, CG32103, is highly expressed in the corpora allata in the fruit fly Drosophila melanogaster (Diptera: Drosophilidae)

Original Research Paper

Abstract

Here we describe a novel gene that is highly expressed in the corpora allata, an endocrine organ responsible for synthesizing juvenile hormones (JHs), in the fruit fly, Drosophila melanogaster Meigen. We isolated an enhancer-trap line in which the transgene was inserted at the locus CG32103, which encodes a mitochondrial carrier family protein with calcium-binding motifs. RNA in situ hybridization revealed that CG32103 is predominantly expressed in the corpora allata in D. melanogaster larvae. Putative orthologs of CG32103 are conserved in many insect species. Mitochondrial carriers are responsible for transporting metabolites across the inner mitochondrial membrane. Given that both mitochondrial membrane transport and cytoplasmic calcium signaling are important for JH biosynthesis regulation, we speculated that CG32103 represents a new member of the family of JH biosynthesis regulators in insects.

Keywords

Juvenile hormone Corpora allata Mitochondrial carrier Drosophila melanogaster 

References

  1. Adám G, Perrimon N, Noselli S (2003) The retinoic-like juvenile hormone controls the looping of left–right asymmetric organs in Drosophila. Development 130:2397–2406PubMedCrossRefGoogle Scholar
  2. Bellés X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181–199PubMedCrossRefGoogle Scholar
  3. Bendena WG, Zhang J, Burtenshaw SM, Tobe SS (2011) Evidence for differential biosynthesis of juvenile hormone (and related) sesquiterpenoids in Drosophila melanogaster. Gen Comp Endocrinol 172:56–61PubMedCrossRefGoogle Scholar
  4. Birgul N, Weise C, Kreienkamp HJ, Richter D (1999) Reverse physiology in Drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J 18:5892–5900PubMedCrossRefGoogle Scholar
  5. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  6. Carrisi C, Madeo M, Morciano P, Dolce V, Cenci G, Cappello AR, Mazzeo G, Iacopetta D, Capobianco L (2008) Identification of the Drosophila melanogaster mitochondrial citrate carrier: bacterial expression, reconstitution, functional characterization and developmental distribution. J Biochem 144:389–392PubMedCrossRefGoogle Scholar
  7. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci USA 106:5731–5736PubMedCrossRefGoogle Scholar
  8. del Arco A, Satrustegui J (2004) Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem 279:24701–24713PubMedCrossRefGoogle Scholar
  9. Durick K, Mendlein J, Xanthopoulos KG (1999) Hunting with traps: genome-wide strategies for gene discovery and functional analysis. Genome Res 9:1019–1025PubMedCrossRefGoogle Scholar
  10. Fiermonte G, De Leonardis F, Todisco S, Palmieri L, Lasorsa FM, Palmieri F (2004) Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem 279:30722–30730PubMedCrossRefGoogle Scholar
  11. Foley KP, Leonard MW, Engel JD (1993) Quantitation of RNA using the polymerase chain reaction. Trends Genet 9:380–385PubMedCrossRefGoogle Scholar
  12. Gilbert LI, Granger NA, Roe RM (2000) The juvenile hormones: historical facts and speculations on future research directions. Insect Biochem Mol Biol 30:617–644PubMedCrossRefGoogle Scholar
  13. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430PubMedCrossRefGoogle Scholar
  14. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Oliver B, Celniker SE (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479PubMedCrossRefGoogle Scholar
  15. Harvie PD, Filippova M, Bryant PJ (1998) Genes expressed in the ring gland, the major endocrine organ of Drosophila melanogaster. Genetics 149:217–231PubMedGoogle Scholar
  16. Helvig C, Koener JF, Unnithan GC, Feyereisen R (2004) CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc Natl Acad Sci USA 101:4024–4029PubMedCrossRefGoogle Scholar
  17. Huang AE, Rehm J, Rubin GM (2000) Recovery of DNA sequences flanking P-element insertions: inverse PCR and plasmid rescue. In: Sullivan W, Ashburner M, Hawley RS (eds) Drosophila protocols. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  18. Indiveri C, Iacobazzi V, Giangregorio N, Palmieri F (1997) The mitochondrial carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochem J 321(Pt 3):713–719PubMedGoogle Scholar
  19. Kaneko Y, Shinoda T, Hiruma K (2011) Remodeling of the corpora cardiaca and the corpora allata during adult metamorphosis in Bombyx mori: identification of invisible corpora cardiaca by the expression of adipokinetic hormone. Appl Entomol Zool 46:87–93CrossRefGoogle Scholar
  20. Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 16:896–898CrossRefGoogle Scholar
  21. Kinjoh T, Kaneko Y, Itoyama K, Mita K, Hiruma K, Shinoda T (2007) Control of juvenile hormone biosynthesis in Bombyx mori: cloning of the enzymes in the mevalonate pathway and assessment of their developmental expression in the corpora allata. Insect Biochem Mol Biol 37:808–818PubMedCrossRefGoogle Scholar
  22. Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H (2009) Structure determination of a new juvenile hormone from a heteropteran insect. Org Lett 11:5234–5237PubMedCrossRefGoogle Scholar
  23. Larsen MJ, Burton KJ, Zantello MR, Smith VG, Lowery DL, Kubiak TM (2001) Type A allatostatins from Drosophila melanogaster and Diplotera puncata activate two Drosophila allatostatin receptors, DAR-1 and DAR-2, expressed in CHO cells. Biochem Biophys Res Commun 286:895–901PubMedCrossRefGoogle Scholar
  24. Lasorsa FM, Pinton P, Palmieri L, Fiermonte G, Rizzuto R, Palmieri F (2003) Recombinant expression of the Ca(2+)-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells. J Biol Chem 278:38686–38692PubMedCrossRefGoogle Scholar
  25. Lehmann R, Tautz D (1994) In situ hybridization to RNA. Methods Cell Biol 44:575–598PubMedCrossRefGoogle Scholar
  26. Lenz C, Williamson M, Grimmelikhuijzen CJ (2000) Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster. Biochem Biophys Res Commun 273:571–577PubMedCrossRefGoogle Scholar
  27. Liu Y, Sheng Z, Liu H, Wen D, He Q, Wang S, Shao W, Jiang RJ, An S, Sun Y, Bendena WG, Wang J, Gilbert LI, Wilson TG, Song Q, Li S (2009) Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila. Development 136:2015–2025PubMedCrossRefGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  29. Lorenzen MD, Kimzey T, Shippy TD, Brown SJ, Denell RE, Beeman RW (2007) piggyBac-based insertional mutagenesis in Tribolium castaneum using donor/helper hybrids. Insect Mol Biol 16:265–275PubMedCrossRefGoogle Scholar
  30. McBrayer Z, Ono H, Shimell M, Parvy JP, Beckstead RB, Warren JT, Thummel CS, Dauphin-Villemant C, Gilbert LI, O’Connor MB (2007) Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev Cell 13:857–871PubMedCrossRefGoogle Scholar
  31. Nijhout HF (1994) Insect hormones. Princeton University Press, PrincetonGoogle Scholar
  32. Niwa R, Matsuda T, Yoshiyama T, Namiki T, Mita K, Fujimoto Y, Kataoka H (2004) CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem 279:35942–35949PubMedCrossRefGoogle Scholar
  33. Niwa R, Niimi T, Honda N, Yoshiyama M, Itoyama K, Kataoka H, Shinoda T (2008) Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem Mol Biol 38:714–720PubMedCrossRefGoogle Scholar
  34. Noriega FG, Ribeiro JM, Koener JF, Valenzuela JG, Hernandez-Martinez S, Pham VM, Feyereisen R (2006) Comparative genomics of insect juvenile hormone biosynthesis. Insect Biochem Mol Biol 36:366–374PubMedCrossRefGoogle Scholar
  35. Nosek MT, Dransfield DT, Aprille JR (1990) Calcium stimulates ATP-Mg/Pi carrier activity in rat liver mitochondria. J Biol Chem 265:8444–8450PubMedGoogle Scholar
  36. Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch Eur J Physiol 447:689–709CrossRefGoogle Scholar
  37. Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F (2001) Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20:5060–5069PubMedCrossRefGoogle Scholar
  38. Richard DS, Applebaum SW, Sliter TJ, Baker FC, Schooley DA, Reuter CC, Henrich VC, Gilbert LI (1989) Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a putative juvenile hormone in the higher Diptera. Proc Natl Acad Sci USA 86:1421–1425PubMedCrossRefGoogle Scholar
  39. Riddiford LM (1994) Cellular and molecular actions of juvenile hormone: general considerations and premetamorphic actions. Adv Insect Physiol 24:213–274CrossRefGoogle Scholar
  40. Riddiford LM, Truman JW, Mirth CK, Shen YC (2010) A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development 137:1117–1126PubMedCrossRefGoogle Scholar
  41. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234PubMedCrossRefGoogle Scholar
  42. Sharma Y, Cheung U, Larsen EW, Eberl DF (2002) pPTGAL, a convenient Gal4 P-element vector for testing expression of enhancer fragments in Drosophila. Genesis 34:115–118PubMedCrossRefGoogle Scholar
  43. Shinoda T, Itoyama K (2003) Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci USA 100:11986–11991PubMedCrossRefGoogle Scholar
  44. Siegmund T, Korge G (2001) Innervation of the ring gland of Drosophila melanogaster. J Comp Neurol 431:481–491PubMedCrossRefGoogle Scholar
  45. Sliter TJ, Sedlak BJ, Baker FC, Schooley DA (1987) Juvenile hormone in Drosophila melanogaster: identification and titer determination during development. Insect Biochem 17:161–165CrossRefGoogle Scholar
  46. Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R, Guarin H, Kronmiller B, Pacleb J, Park S, Wan K, Rubin GM, Celniker SE (2002) A Drosophila full-length cDNA resource. Genome Biol 3:RESEARCH0080Google Scholar
  47. Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 52:277–299PubMedCrossRefGoogle Scholar
  48. Sutherland TD, Feyereisen R (1996) Target of cockroach allatostatin in the pathway of juvenile hormone biosynthesis. Mol Cell Endocrinol 120:115–123PubMedCrossRefGoogle Scholar
  49. Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu K, Iizuka T, Yonemura N, Mita K, Tamura T (2008) Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochem Mol Biol 38:1165–1173PubMedCrossRefGoogle Scholar
  50. Ueda H, Shinoda T, Hiruma K (2009) Spatial expression of the mevalonate enzymes involved in juvenile hormone biosynthesis in the corpora allata in Bombyx mori. J Insect Physiol 55:798–804PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2011

Authors and Affiliations

  1. 1.Initiative for the Promotion of Young Scientists’ Independent ResearchUniversity of TsukubaTsukubaJapan
  2. 2.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations