Applied Entomology and Zoology

, Volume 46, Issue 3, pp 391–397 | Cite as

bHLH-ORANGE family genes regulate the expression of E-box clock genes in Drosophila

  • Taichi Q. Itoh
  • Teiichi Tanimura
  • Akira Matsumoto
Original Research Paper


Drosophila has 13 basic helix-loop-helix-ORANGE (bHLH-O) family genes. One of the members, clockwork orange (cwo), which is the counterpart of mammalian clock genes Dec1 and Dec2, regulates the transcriptional feedback loops of circadian clock genes through binding to E-box sequences in target gene promoters. The goal of the current study was to determine the role of Drosophila bHLH-O proteins in circadian rhythms at the molecular and behavioral level. Promoter assays in cultured Drosophila S2 cells were carried out to investigate which of the known bHLH-O proteins directly regulates the transcription of clock genes. In addition to CWO, three other bHLH-O proteins, SIDE, Mβ and Mγ, suppressed E-box clock gene transcription in vitro. RNA interference (RNAi) was used to generate bHLH-O knockdown flies in pacemaker neurons, and then locomotor activity rhythm was measured. cwo knockdown flies exhibited a remarkable phenotype. To clarify the functional complementation in circadian regulation among CWO, SIDE, Mβ and Mγ, promoter activity in the presence of combinations of two bHLH-O genes and locomotor rhythm in double knockdown flies were examined. The results suggest that CWO predominantly acts as a key factor of circadian regulation both in vitro and in vivo.


Drosophila Circadian rhythm Clockwork orange Basic helix-loop-helix-ORANGE 


  1. Blau J, Young MW (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99:661–671. doi:10.1016/S0092-8674(00)81554-8 PubMedCrossRefGoogle Scholar
  2. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, Weitz CJ, Takahashi JS, Kay SA (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280:1599–1603. doi:10.1126/science.280.5369.1599 PubMedCrossRefGoogle Scholar
  3. Davis RL, Turner DL (2001) Vertebrate hairy enhancer of split regulated proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20:8342–8357. doi:10.1038/sj.onc.1205094 PubMedCrossRefGoogle Scholar
  4. de Jong RN, Daniels MA, Kaptein R, Folkers GE (2006) Enzyme free cloning for high throughput gene cloning and expression. J Struct Funct Genomics 7:109–118. doi:10.1007/s10969-006-9014-z Google Scholar
  5. Fisher AL, Caudy M (1998) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12:1931–1940. doi:10.1101/gad.12.13.1931 PubMedCrossRefGoogle Scholar
  6. Fisher AL, Ohsako S, Caudy M (1996) The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein–protein interaction domain. Mol Cell Biol 16:2670–2677PubMedGoogle Scholar
  7. Fuchikawa T, Sanada S, Nishio R, Matsumoto A, Matsuyama T, Yamagishi M, Tomioka K, Tanimura T, Miyatake T (2010) The clock gene cryptochrome of Bactrocera cucurbitae (Diptera: Tephritidae) in strains with different mating times. Heredity 104:387–392 (Epub 2009 Dec 16). doi:10.1038/hdy.2009.167 Google Scholar
  8. George H, Terracol R (1997) The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors. Genetics 146:1345–1363PubMedGoogle Scholar
  9. Grbavec D, Stifani S (1996) Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 223:701–705. doi:10.1006/bbrc.1996.0959 PubMedCrossRefGoogle Scholar
  10. Hardin PE (2006) Essential and expendable features of the circadian timekeeping mechanism. Curr Opin Neurobiol 16:686–692. doi:10.1016/j.conb.2006.09.001 PubMedCrossRefGoogle Scholar
  11. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844. doi:10.1038/nature01123 PubMedCrossRefGoogle Scholar
  12. Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771PubMedGoogle Scholar
  13. Kadener S, Stoleru D, McDonald M, Nawathean P, Rosbash M (2007) Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component. Genes Dev 21:1675–1686. doi:10.1101/gad.1552607 PubMedCrossRefGoogle Scholar
  14. Lim C, Chung BY, Pitman JL, McGill JJ, Pradhan S, Lee J, Keegan KP, Choe J, Allada R (2007) Clockwork orange encodes a transcriptional repressor important for circadianclock amplitude in Drosophila. Curr Biol 17:1–8. doi:10.1016/j.cub.2007.05.039 CrossRefGoogle Scholar
  15. Lin S, Lin M, Horváth P, Reddy KL, Storti RV (1997) PDP1, a novel Drosophila PAR domain bZIP transcription factor expressed in developing mesoderm, endoderm and ectoderm, is a transcriptional regulator of somatic muscle genes. Development 124:4685–4696PubMedGoogle Scholar
  16. Matsumoto A, Ukai-Tadenuma M, Yamada RG, Houl J, Uno KD, Kasukawa T, Dauwalder B, Itoh TQ, Takahashi K, Ueda R, Hardin PE, Tanimura T, Ueda HR (2007) A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev 21:1687–1700. doi:10.1101/gad.1552207 PubMedCrossRefGoogle Scholar
  17. Matsumoto A, Ohta Y, Itoh TQ, Sanada-Morimura S, Matsuyama T, Fuchikawa T, Tanimura T, Miyatake T (2008) Period gene of Bactrocera cucurbitae (Diptera: Tephritidae) among strains with different mating times and sterile insect technique. Ann Entomol Soc Am 101:1121–1130. doi:10.1603/0013-8746-101.6.1121 CrossRefGoogle Scholar
  18. McDonald MJ, Rosbash M, Emery P (2001) Wild-type circadian rhythmicity is dependent on closely spaced E boxes in the Drosophila timeless promoter. Mol Cell Biol 21:1207–1217. doi:10.1128/MCB.21.4.1207-1217.2001 PubMedCrossRefGoogle Scholar
  19. Miyatake T (2011) Insect quality control: synchronized sex, mating system, and biological rhythm. Appl Entomol Zool 46:3–14. doi:0.1007/s13355-010-0017-7 CrossRefGoogle Scholar
  20. Nagoshi E, Sugino K, Kula E, Okazaki E, Tachibana T, Nelson S, Rosbash M (2010) Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nat Neurosci 13:60–68. doi:60-68.10.1038/nn.2451 PubMedCrossRefGoogle Scholar
  21. Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802. doi:10.1016/S0092-8674(00)81676-1 PubMedCrossRefGoogle Scholar
  22. Richier B, Michard-Vanhée C, Lamouroux A, Papin C, Rouyer F (2008) The clockwork orange Drosophila protein functions as both an activator and a repressor of clock gene expression. J Biol Rhythms 23:103–116. doi:10.1177/0748730407313817 PubMedCrossRefGoogle Scholar
  23. Siwicki KK, Eastman C, Petersen G, Rosbash M, Hall JC (1988) Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1:141–150. doi:10.1016/0896-6273(88)90198-5 PubMedCrossRefGoogle Scholar
  24. Sokolove PG, Bushnell WN (1978) The chi square periodogram: its utility for analysis of circadian rhythm. J Theor Biol 72:131–160. doi:10.1016/0022-5193(78)90022-X PubMedCrossRefGoogle Scholar
  25. Tomioka K, Matsumoto A (2009) A comparative view of insect circadian clock systems. Cell Mol Life Sci 67:1397–1406. doi:10.1007/s00018-009-0232-y PubMedCrossRefGoogle Scholar
  26. Ueda HR, Matsumoto A, Kawamura M, Tanimura T, Hashimoto S (2002) Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J Biol Chem 277:14048–14052. doi:10.1074/jbc.C100765200 PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2011

Authors and Affiliations

  • Taichi Q. Itoh
    • 1
  • Teiichi Tanimura
    • 2
  • Akira Matsumoto
    • 3
  1. 1.Graduate School of Systems Life SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan
  3. 3.Department of BiologyJuntendo University School of MedicineInzaiJapan

Personalised recommendations