Advertisement

A novel WDR62 missense mutation in microcephaly with abnormal cortical architecture and review of the literature

  • Melinda Zombor
  • Tibor Kalmár
  • Nikoletta Nagy
  • Marianne Berényi
  • Borbála Telcs
  • Zoltán Maróti
  • Oliver Brandau
  • László SztrihaEmail author
Human Genetics • Original Paper

Abstract

Autosomal recessive primary microcephaly (MCPH) is a group of rare neurodevelopmental diseases with severe microcephaly at birth. One type of the disorder, MCPH2, is caused by biallelic mutations in the WDR62 gene, which encodes the WD repeat–containing protein 62. Patients with WDR62 mutation may have a wide range of malformations of cortical development in addition to congenital microcephaly. We describe two patients, a boy and a girl, with severe congenital microcephaly, global developmental delay, epilepsy, and failure to thrive. MRI showed hemispherical asymmetry, diffuse pachygyria, thick gray matter, indistinct gray-white matter junction, and corpus callosum and white matter hypoplasia. Whole exome sequencing revealed the same novel homozygous missense mutation, c.668T>C, p.Phe223Ser in exon 6 of the WDR62 gene. The healthy parents were heterozygous for this mutation. The mutation affects a highly conserved region in one of the WD repeats of the WDR62 protein. Haplotype analysis showed genetic relatedness between the families of the patients. Our findings expand the spectrum of mutations randomly distributed in the WDR62 gene. A review is also provided of the brain malformations described in WDR62 mutations in association with congenital microcephaly.

Keywords

Microcephaly Malformations of cortical development Whole exome sequencing WDR62 mutation Global developmental delay 

Notes

Acknowledgements

The authors thank the patients’ parents for their participation in this study.

Authors’ contributions

MZ examined the patients and was a major contributor in writing the manuscript; MB and BT interpreted the patients’ data; TK, NN, and ZM contributed to gene analysis; OB supervised laboratory work; LSZ analyzed MRI data and designed the study. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflicts of interest.

Ethical approval and consent to participate

The parents of both patients gave written informed consent to enter the study, which was approved by the Ethics Committee of the Faculty of Medicine, University of Szeged (Szeged, Hungary, Reference no: 18/2016-SZTE).

References

  1. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101CrossRefGoogle Scholar
  2. Alcantara D, O’Driscoll M (2014) Congenital microcephaly. Am J Med Genet C Semin Med Genet 166C:124–139CrossRefGoogle Scholar
  3. Bacino CA, Arriola LA, Wiszniewska J, Bonnen PE (2012) WDR62 missense mutation in a consanguineous family with primary microcephaly. Am J Med Genet A 158A:622–625CrossRefGoogle Scholar
  4. Banerjee S, Chen H, Huang H, Wu J, Yang Z, Deng W, Chen D, Deng J, Su Y, Li Y, Wu C, Wang Y, Zeng H, Wang Y, Li X (2016) Novel mutations c.28G>T (p.Ala10Ser) and c.189G>T (p.Glu63Asp) in WDR62 associated with early onset acanthosis and hyperkeratosis in a patient with autosomal recessive microcephaly type 2. Oncotarget 7:78363–78371Google Scholar
  5. Barbelanne M, Tsang WY (2014) Molecular and cellular basis of autosomal recessive primary microcephaly. Biomed Res Int.  https://doi.org/10.1155/2014/547986
  6. Bastaki F, Mohamed M, Nair P, Saif F, Tawfiq N, Aithala G, El-Halik M, Al-Ali M, Hamzeh AR (2016) Novel splice-site mutation in WDR62 revealed by whole-exome sequencing in a Sudanese family with primary microcephaly. Congenit Anom 56:135–137CrossRefGoogle Scholar
  7. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA (2011) Centrosomes and cilia in human disease. Trends Genet 27:307–315CrossRefGoogle Scholar
  8. Bhat V, Girimaji SC, Mohan G, Arvinda HR, Singhmar P, Duvvari MR, Kumar A (2011) Mutations in WDR62, encoding a centrosomal and nuclear protein, in Indian primary microcephaly families with cortical malformations. Clin Genet 80:532–540CrossRefGoogle Scholar
  9. Bilgüvar K, Öztürk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoğlu D, Tüysüz B, Çağlayan AO, Gökben S, Kaymakçalan H, Barak T, Bakircioğlu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S, Dinçer A, Johnson MH, Bronen RA, Koçer N, Per H, Mane S, Pamir MN, Yalçinkaya C, Kumandaş S, Topçu M, Özmen M, Šestan N, Lifton RP, State MW, Günel M (2010) Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467:207–210CrossRefGoogle Scholar
  10. Bogoyevitch MA, Yeap YYC, Qu Z, Ngoei KR, Yip YY, Zhao TT, Heng JI, Ng DCH (2012) WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression. J Cell Sci 125:5096–50109CrossRefGoogle Scholar
  11. Carmena M, Ruchaud S, Earnshaw WC (2009) Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol 21:796–805CrossRefGoogle Scholar
  12. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience.  https://doi.org/10.1186/s13742-015-0047-8
  13. Chen JF, Zhang Y, Wilde J, Hansen K, Lai F, Niswander L (2014) Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat Commun.  https://doi.org/10.1038/ncomms4885
  14. Farag HG, Froehler S, Oexle K, Ravindran E, Schindler D, Staab T, Huebner A, Kraemer N, Chen W, Kaindl AM (2013) Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation. Orphanet J Rare Dis.  https://doi.org/10.1186/1750-1172-8-178
  15. Fujita H, Yoshino Y, Chiba N (2016) Regulation of the centrosome cycle. Mol Cell Oncol.  https://doi.org/10.1080/23723556.2015.1075643
  16. Jayaraman D, Kodani A, Gonzalez DM, Mancias JD, Mochida GH, Vagnoni C, Johnson J, Krogan N, Harper JW, Reiter JF, Yu TW, Bae B, Walsh CA (2016) Microcephaly proteins Wdr62 and Aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate. Neuron 92:813–828CrossRefGoogle Scholar
  17. Johnson MB, Sun X, Kodani A, Borges-Monroy R, Girskis KM, Ryu SC, Wang PP, Patel K, Gonzalez DM, Woo YM, Yan Z, Liang B, Smith RS, Chatterjee M, Coman D, Papademetris X, Staib LH, Hyder F, Mandeville JB, Grant PE, Im K, Kwak H, Engelhardt JF, Walsh CA, Bae BI (2018) Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature 556:370–375CrossRefGoogle Scholar
  18. Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L, Sztriha L, Partlow JN, Kim H, Krup AL, Dammermann A, Krogan NJ, Walsh CA, Reiter JF (2015) Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. elife.  https://doi.org/10.7554/eLife.07519
  19. Kousar R, Hassan MJ, Khan B, Basit S, Mahmood S, Mir A, Ahmad W, Ansar M (2011) Mutations in WDR62 gene in Pakistani families with autosomal recessive primary microcephaly. BMC Neurol.  https://doi.org/10.1186/1471-2377-11-119
  20. Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58:2085–2097CrossRefGoogle Scholar
  21. Lim NR, Yeap YYC, Ang CS, Williamson NA, Bogoyevitch MA, Quinn LM, Ng DCH (2016) Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation. Cell Cycle 15:413–424CrossRefGoogle Scholar
  22. McDonell LM, Chardon JW, Schwartzentruber J, Foster D, Beaulieu CL, FORGE Canada Consortium, Majewski J, Bulman DE, Boycott KM (2014) The utility of exome sequencing for genetic diagnosis in a familial microcephaly epilepsy syndrome. BMC Neurol.  https://doi.org/10.1186/1471-2377-14-22
  23. Memon MM, Raza SI, Basit S, Kousar R, Ahmad W, Ansar M (2013) A novel WDR62 mutation causes primary microcephaly in a Pakistani family. Mol Biol Rep 40:591–595CrossRefGoogle Scholar
  24. Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA (1999) Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1:88–93CrossRefGoogle Scholar
  25. Miyamoto T, Akutsu SN, Fukumitsu A, Morino H, Masatsuna Y, Hosoba K, Kawakami H, Yamamoto T, Shimizu K, Ohashi H, Matsuura S (2017) PLK1-mediated phosphorylation of WDR62/MCPH2 ensures proper mitotic spindle orientation. Hum Mol Genet 26:4429–4440CrossRefGoogle Scholar
  26. Murdock DR, Clark GD, Bainbridge MN, Newsham I, Wu YQ, Muzny DM, Cheung SW, Gibbs RA, Ramocki MB (2011) Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria. Am J Med Genet A 155A:2071–2077CrossRefGoogle Scholar
  27. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Püttmann L, Vahid LN, Jensen C, Moheb LA, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi SG, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi MJS, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss AW, Tzschach A, Kahrizi K, Ropers HH (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–63CrossRefGoogle Scholar
  28. Nardello R, Fontana A, Antona V, Beninati A, Mangano GD, Stallone MC, Mangano S (2018) A novel mutation of WDR62 gene associated with severe phenotype including infantile spasm, microcephaly, and intellectual disability. Brain and Development 40:58–64CrossRefGoogle Scholar
  29. Naseer MI, Rasool M, Sogaty S, Chaudhary RA, Mansour HM, Chaudhary AG, Abuzenadah AM, Al-Qahtani H (2017) A novel WDR62 mutation cause primary microcephaly in a large consanguineous Saudi family. Ann Saudi Med 37:148–153CrossRefGoogle Scholar
  30. Nicholas AK, Khurshid M, Désir J, Carvalho OP, Cox JJ, Thornton G, Kausar R, Ansar M, Ahmad W, Verloes A, Passemard S, Misson JP, Lindsay S, Gergely F, Dobyns WB, Roberts E, Abramowicz M, Woods CG (2010) WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet 42:1010–1014CrossRefGoogle Scholar
  31. Poulton CJ, Schot R, Seufert K, Lequin MH, Accogli A, D’Annunzio G, Villard L, Philip N, de Coo R, Catsman-Berrevoets C, Grasshoff U, Kattentidt-Mouravieva A, Calf H, de Vreugt-Gronloh E, van Unen L, Verheijen FW, Galjart N, Morris-Rosendahl DJ, Mancini GMS (2014) Severe presentation of WDR62 mutation: is there a role for modifying genetic factors? Am J Med Genet Part A 164A:2161–2171CrossRefGoogle Scholar
  32. Prosser SL, Pelletier L (2017) Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol 18:187–201CrossRefGoogle Scholar
  33. Rupp V, Rauf S, Naveed I, Windpassinger C, Mir A (2014) A novel single base pair duplication in WDR62 causes primary microcephaly. BMC Med Genet.  https://doi.org/10.1186/s12881-014-0107-4
  34. Sajid Hussain M, Marriam Bakhtiar S, Farooq M, Anjum I, Janzen E, Reza Toliat M, Eiberg H, Kjaer KW, Tommerup N, Noegel AA, Nürnberg P, Baig SM, Hansen L (2013) Genetic heterogeneity in Pakistani microcephaly families. Clin Genet 83:446–451CrossRefGoogle Scholar
  35. Sgourdou P, Mishra-Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, Ishigame K, Giannikou K, Quon JL, Sestan N, Caglayan AO, Gunel M, Louvi A (2017) Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep.  https://doi.org/10.1038/srep43708
  36. Thiele H, Nürnberg P (2005) HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics 21:1730–1732CrossRefGoogle Scholar
  37. van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA (2012) Cell division control by the chromosomal passenger complex. Exp Cell Res 318:1407–1420CrossRefGoogle Scholar
  38. Wang X, Tsai JW, Imai JH, Lian WN, Vallee EB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955CrossRefGoogle Scholar
  39. Wang R, Khan A, Han S, Zhang X (2017) Molecular analysis of 23 Pakistani families with autosomal recessive primary microcephaly using targeted next-generation sequencing. J Hum Genet 62:299–304CrossRefGoogle Scholar
  40. Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, Topçu M, McDonald MT, Barry BJ, Felie J, Sunu C, Dobyns WB, Folkerth RD, Barkovich AJ, Walsh CA (2010) Mutations in WDR62 encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 42:1015–1020CrossRefGoogle Scholar
  41. Zaqout S, Morris-Rosendahl D, Kaindl AM (2017) Autosomal recessive primary microcephaly (MCPH): an update. Neuropediatrics 48:135–142CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2019

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of SzegedSzegedHungary
  2. 2.Department of Medical GeneticsUniversity of SzegedSzegedHungary
  3. 3.Department of Developmental NeurologySt. Margaret HospitalBudapestHungary
  4. 4.Centogene AGRostockGermany

Personalised recommendations