Journal of Applied Genetics

, Volume 60, Issue 1, pp 63–70 | Cite as

Structural and copy number chromosome abnormalities in canine cutaneous mast cell tumours

  • Miluse VozdovaEmail author
  • Svatava Kubickova
  • Halina Cernohorska
  • Jan Fröhlich
  • Petr Fictum
  • Jiri Rubes
Animal Genetics • Original Paper


Mast cell tumours (MCTs) are the most common skin tumours in dogs. Their clinical behaviour is variable and their aetiology remains largely unknown. We performed a metaphase fluorescence in situ hybridisation (FISH) with whole chromosome painting probes, and interphase FISH with BAC probes for 14 cancer-related genes to reveal clonal structural chromosome rearrangements and copy number variants (CNVs) in canine cutaneous MCTs. The metaphase FISH performed in three MCTs revealed several clonal monosomies and trisomies and two different chromosome rearrangements. No centric fusions were detected. The interphase FISH showed a variety of low frequency CNVs for the individual cancer-related genes. The heterogeneous character of the detected abnormalities indicates increased chromosome instability in canine MCTs. The clonal gain of chromosome 11 was detected in 81% (13/16) of the MCTs. Further research is needed to evaluate the significance of this abnormality as prognostic factor for the survival time or recurrence risk assessments in canine cutaneous MCTs.


Dog Mast cell tumour Chromosome Trisomy Monosomy Chromosome rearrangement Copy number variant Cancer 



The authors are grateful to the dog owners and to veterinarians J. Pfeifr, J. Bezdek and T. Fiala who collected the blood and tumour samples at the Veterinary Clinic Animed, Brno, at the Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, and at Veterinary Hospital AA-Vet, Prague, Czech Republic.

Funding information

This work was supported by the grant 16-26655S from the Czech Science Foundation (GA CR), by the Ministry of Agriculture (RO 0518) and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601).

Compliance with ethical standards

The study complies with the current laws of the Czech Republic. All applicable international, national and institutional guidelines for the care and use of animals were followed. This article does not contain any studies using human subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13353_2018_471_MOESM1_ESM.doc (44 kb)
Supplemental Table S1 Combinations of the red fox whole chromosome painting probes used for the screening of canine MCTs and their orthology with canine chromosomes (according to Becker et al. 2011). The vulpine probes were labelled with Spectrum Green (SG), Spectrum Orange (SO), Biotin (Bio) and Digoxigenin (Dig). (DOC 43 kb)
13353_2018_471_MOESM2_ESM.doc (34 kb)
Supplemental Table S2 BAC probes used for the interphase FISH analysis of cancer-related genes and their localisation on canine chromosomes. (DOC 34 kb)
13353_2018_471_MOESM3_ESM.doc (510 kb)
Supplemental Figure 1 Complex rearrangement t(X;4;5) analysed by FISH using BAC probes for TP53 and FAT2 genes (a) and the locus-specific probe for the PDGFRB gene (b). (DOC 510 kb)


  1. Aguirre-Hernández J, Milne BS, Queen C et al (2009) Disruption of chromosome 11 in canine fibrosarcomas highlights an unusual variability of CDKN2B in dogs. BMC Vet Res 5:27CrossRefGoogle Scholar
  2. Appiah-Kubi K, Lan T, Wang Y et al (2017) Platelet-derived growth factor receptors (PDGFRs) fusion genes involvement in hematological malignancies. Crit Rev Oncol Hematol 109:20–34CrossRefGoogle Scholar
  3. Ayl RD, Couto CG, Hammer AS et al (1992) Correlation of DNA ploidy to tumor histologic grade, clinical variables, and survival in dogs with mast cell tumors. Vet Pathol 29:386–390CrossRefGoogle Scholar
  4. Becker SED, Thomas R, Trifonov VA, Wayne RK, Graphodatsky AS et al (2011) Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosom Res 19:685–708CrossRefGoogle Scholar
  5. Blackwood L, Murphy S, Buracco P et al (2012) European consensus document on mast cell tumours in dogs and cats. Vet Comp Oncol 10:e1–e29CrossRefGoogle Scholar
  6. Breen M, Modiano JF (2008) Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans--man and his best friend share more than companionship. Chromosom Res 16:145–154CrossRefGoogle Scholar
  7. Breen M, Bullerdiek J, Langford CF (1999a) The DAPI banded karyotype of the domestic dog (Canis familiaris) generated using chromosome-specific paint probes. Chromosom Res 7:401–406CrossRefGoogle Scholar
  8. Breen M, Thomas R, Binns MM et al (1999b) Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61:145–155CrossRefGoogle Scholar
  9. Chatterjee A, Ghosh J, Kapur R (2015) Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder. Oncotarget 6:18250–18264CrossRefGoogle Scholar
  10. Cruz Cardona JA, Milner R, Alleman AR et al (2011) BCR-ABL translocation in a dog with chronic monocytic leukemia. Vet Clin Pathol 40:40–47CrossRefGoogle Scholar
  11. Devitt JJ, Maranon DG, Ehrhart EJ et al (2009) Correlations between numerical chromosomal aberrations in the tumor and peripheral blood in canine lymphoma. Cytogenet Genome Res 124:12–18CrossRefGoogle Scholar
  12. Dobson JM, Samuel S, Milstein H et al (2002) Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J Small Anim Pract 43:240–246CrossRefGoogle Scholar
  13. Downing S, Chien MB, Kass PH et al (2002) Prevalence and importance of internal tandem duplications in exons 11 and 12 of c-kit in mast cell tumors of dogs. Am J Vet Res 63:1718–1723CrossRefGoogle Scholar
  14. Figueiredo JF, Culver S, Behling-Kelly E et al (2012) Acute myeloblastic leukemia with associated BCR-ABL translocation in a dog. Vet Clin Pathol 41:362–368CrossRefGoogle Scholar
  15. Garcia-Montero AC, Jara-Acevedo M, Teodosio C et al (2006) KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood 108:2366–2372CrossRefGoogle Scholar
  16. Giantin M, Vascellari M, Morello EM et al (2012) c-kit messenger RNA and protein expression and mutations in canine cutaneous mast cell tumors: correlations with post-surgical prognosis. J Vet Diagn Investig 24:116–126CrossRefGoogle Scholar
  17. Gil da Costa RM (2015) c-kit as a prognostic and therapeutic marker in canine cutaneous mast cell tumours: from laboratory to clinic. Vet J 205:5–10CrossRefGoogle Scholar
  18. Grüntzig K, Graf R, Boo G et al (2016) Swiss Canine Cancer Registry 1955-2008: occurrence of the most common tumour diagnoses and influence of age, breed, body size, sex and neutering status on tumour development. J Comp Pathol 155:156–170CrossRefGoogle Scholar
  19. Gupta R, Bain BJ, Knight CL (2002) Cytogenetic and molecular genetic abnormalities in systemic mastocytosis. Acta Haematol 107:123–128CrossRefGoogle Scholar
  20. Hahn KA, Richardson RC, Hahn EA, Chrisman CL (1994) Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma. Vet Pathol 31:528–540CrossRefGoogle Scholar
  21. ISCN (2016). An international system for human cytogenetic nomenclature (2016) McGowan-Jordan J, Simons A, Schmid M (Eds.), Karger, Reprint of Cytogenet Genome Res Vol. 149, No. 1–2Google Scholar
  22. Jark PC, Mundin DBP, de Carvalho M et al (2017) Genomic copy number variation associated with clinical outcome in canine cutaneous mast cell tumors. Res Vet Sci 111:26–30CrossRefGoogle Scholar
  23. Kiupel M, Webster JD, Bailey KL et al (2011) Proposal of a 2-tier histologic grading system for canine cutaneous mast cell tumors to more accurately predict biological behavior. Vet Pathol 48:147–155CrossRefGoogle Scholar
  24. Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosom Res 10:571–577CrossRefGoogle Scholar
  25. Letard S, Yang Y, Hanssens K et al (2008) Gain-of-function mutations in the extracellular domain of KIT are common in canine mast cell tumors. Mol Cancer Res 6:1137–1145CrossRefGoogle Scholar
  26. Lin T-Y, Thomas R, Tsai P-C et al (2009) Generation and characterization of novel canine malignant mast cell line CL1. Vet Immunol Immunopathol 127:114–124CrossRefGoogle Scholar
  27. Lishner M, Confino-Cohen R, Mekori YA et al (1996) Trisomies 9 and 8 detected by fluorescence in situ hybridization in patients with systemic mastocytosis. J Allergy Clin Immunol 98:199–204CrossRefGoogle Scholar
  28. London CA, Galli SJ, Yuuki T et al (1999) Spontaneous canine mast cell tumors express tandem duplications in the proto-oncogene c-kit. Exp Hematol 27:689–697CrossRefGoogle Scholar
  29. Marconato L, Zorzan E, Giantin M et al (2014) Concordance of c-kit mutational status in matched primary and metastatic cutaneous canine mast cell tumors at baseline. J Vet Intern Med 28:547–553CrossRefGoogle Scholar
  30. Mayr B, Kramberger-Kaplan E, Loupal G, Schleger W (1992) Analysis of complex cytogenetic alterations in three canine mammary sarcomas. Res Vet Sci 53:205–211CrossRefGoogle Scholar
  31. Mayr B, Reifinger M, Brem G et al (1999) Cytogenetic, ras, and p53: studies in cases of canine neoplasms (hemangiopericytoma, mastocytoma, histiocytoma, chloroma). J Hered 90:124–128CrossRefGoogle Scholar
  32. Mertens F, Johansson B, Fioretos T, Mitelman F (2015) The emerging complexity of gene fusions in cancer. Nat Rev Cancer 15:371–381CrossRefGoogle Scholar
  33. Milne BS, Hoather T, O’Brien PCM et al (2004) Karyotype of canine soft tissue sarcomas: a multi-colour, multi-species approach to canine chromosome painting. Chromosom Res 12:825–835CrossRefGoogle Scholar
  34. Mitelman F (2000) Recurrent chromosome aberrations in cancer. Mutat Res 462:247–253CrossRefGoogle Scholar
  35. Mitelman F, Johansson B, Mandahl N, Mertens F (1997) Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet 95:1–8CrossRefGoogle Scholar
  36. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245CrossRefGoogle Scholar
  37. Mochizuki H, Thomas R, Moroff S, Breen M (2017) Genomic profiling of canine mast cell tumors identifies DNA copy number aberrations associated with KIT mutations and high histological grade. Chromosom Res 25(2):129–143CrossRefGoogle Scholar
  38. Myllykangas S, Himberg J, Böhling T et al (2006) DNA copy number amplification profiling of human neoplasms. Oncogene 25:7324–7332CrossRefGoogle Scholar
  39. Naumann N, Jawhar M, Schwaab J et al (2018) Incidence and prognostic impact of cytogenetic aberrations in patients with systemic mastocytosis. Genes Chromosomes Cancer 57:252–259CrossRefGoogle Scholar
  40. Patnaik AK, Ehler WJ, MacEwen EG (1984) Canine cutaneous mast cell tumor: morphologic grading and survival time in 83 dogs. Vet Pathol 21:469–474CrossRefGoogle Scholar
  41. Poorman K, Borst L, Moroff S et al (2015) Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization. Chromosom Res 23:171–186CrossRefGoogle Scholar
  42. Preziosi R, Sarli G, Paltrinieri M (2007) Multivariate survival analysis of histological parameters and clinical presentation in canine cutaneous mast cell tumours. Vet Res Commun 31:287–296CrossRefGoogle Scholar
  43. Reimann-Berg N, Willenbrock S, Murua Escobar H et al (2011) Two new cases of polysomy 13 in canine prostate cancer. Cytogenet Genome Res 132:16–21CrossRefGoogle Scholar
  44. Reimann-Berg N, Murua Escobar H, Nolte I (2012) Relevance of chromosome 13 aberrations in canine tumours. Tierärztl Prax Ausg K KleintiereHeimtiere 40:267–270CrossRefGoogle Scholar
  45. Sabattini S, Scarpa F, Berlato D, Bettini G (2015) Histologic grading of canine mast cell tumor: is 2 better than 3? Vet Pathol 52:70–73CrossRefGoogle Scholar
  46. Sargan DR, Milne BS, Hernandez JA et al (2005) Chromosome rearrangements in canine fibrosarcomas. J Hered 96:766–773CrossRefGoogle Scholar
  47. Stone DM, Jacky PB, Prieur DJ (1991) Cytogenetic evaluation of four canine mast cell tumors. Cancer Genet Cytogenet 53:105–112CrossRefGoogle Scholar
  48. Switoński M, Reimann N, Bosma AA et al (1996) Report on the progress of standardization of the G-banded canine (Canis familiaris) karyotype. Committee for the Standardized Karyotype of the Dog (Canis familiaris). Chromosom Res 4:306–309CrossRefGoogle Scholar
  49. Takeuchi Y, Fujino Y, Watanabe M et al (2013) Validation of the prognostic value of histopathological grading or c-kit mutation in canine cutaneous mast cell tumours: a retrospective cohort study. Vet J 196:492–498CrossRefGoogle Scholar
  50. Thomas R, Bridge W, Benke K, Breen M (2003a) Isolation and chromosomal assignment of canine genomic BAC clones representing 25 cancer-related genes. Cytogenet Genome Res 102:249–253CrossRefGoogle Scholar
  51. Thomas R, Smith KC, Ostrander EA et al (2003b) Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 89:1530–1537CrossRefGoogle Scholar
  52. Webster JD, Yuzbasiyan-Gurkan V, Kaneene JB et al (2006) The role of c-KIT in tumorigenesis: evaluation in canine cutaneous mast cell tumors. Neoplasia 8:104–111CrossRefGoogle Scholar
  53. Welle MM, Bley CR, Howard J, Rüfenacht S (2008) Canine mast cell tumours: a review of the pathogenesis, clinical features, pathology and treatment. Vet Dermatol 19:321–339CrossRefGoogle Scholar
  54. Winkler S, Murua Escobar H, Reimann-Berg N et al (2005) Cytogenetic investigations in four canine lymphomas. Anticancer Res 25:3995–3998Google Scholar
  55. Winkler S, Reimann-Berg N, Murua Escobar H et al (2006) Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 169:154–158CrossRefGoogle Scholar
  56. Yang F, O’Brien PC, Milne BS et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2018

Authors and Affiliations

  1. 1.Central European Institute of Technology - Veterinary Research InstituteBrnoCzech Republic
  2. 2.Department of Pathological Morphology and Parasitology, Faculty of Veterinary MedicineUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic

Personalised recommendations