Journal of Applied Genetics

, Volume 59, Issue 2, pp 161–168 | Cite as

Tip60: updates

Human Genetics • Review
  • 112 Downloads

Abstract

The maintenance of genome integrity is essential for organism survival. Therefore, eukaryotic cells possess many DNA repair mechanisms in response to DNA damage. Acetyltransferase, Tip60, plays a central role in ATM and p53 activation which are involved in DNA repair. Recent works uncovered the roles of Tip60 in ATM and p53 activation and how Tip60 is recruited to double-strand break sites. Moreover, recent works have demonstrated the role of Tip60 in cancer progression. Here, we review the current understanding of how Tip60 activates both ATM and p53 in response to DNA damage and his new roles in tumorigenesis.

Keywords

Tip60 protein p53 ATM kinase Double-strand break DNA repair Histone methylation Cancer 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aplan PD (2006) Causes of oncogenic chromosomal translocation. Trends Genet 22(1):46–55CrossRefPubMedGoogle Scholar
  2. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. FEBS J 268(10):2764–2772Google Scholar
  3. Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD (2014) DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci 111(25):9169–9174CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bararia D, Trivedi AK, Zada AP, Greif PA, Mulaw MA, Christopeit M, Hiddemann W, Bohlander SK, Behre G (2008) Proteomic identification of the MYST domain histone acetyltransferase TIP60 (HTATIP) as a co-activator of the myeloid transcription factor C/EBPα. Leukemia 22(4):800–807CrossRefPubMedGoogle Scholar
  5. Bassi C, Li YT, Khu K, Mateo F, Baniasadi PS, Elia A, Mason J, Stambolic V, Pujana MA, Mak TW, Gorrini C (2016) The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair. Cell Death & Differentiation 23(7):1198–1208CrossRefGoogle Scholar
  6. Blanpain C, Mohrin M, Sotiropoulou PA, Passegue E (2011) DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8(1):16–29CrossRefPubMedGoogle Scholar
  7. Bosken CH, Wei Q, Amos CI, Spitz MR (2002) An analysis of DNA repair as a determinant of survival in patients with non-small-cell lung cancer. J Natl Cancer Inst 94(14):1091–1099CrossRefPubMedGoogle Scholar
  8. Braig M, Schmitt CA (2006) Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66(6):2881–2884CrossRefPubMedGoogle Scholar
  9. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15(2):164–171CrossRefPubMedGoogle Scholar
  10. Chandeck C, Mooi WJ (2010) Oncogene-induced cellular senescence. Adv Anat Pathol 17(1):42–48PubMedGoogle Scholar
  11. Charvet C, Wissler M, Brauns-Schubert P, Wang SJ, Tang Y, Sigloch FC, Mellert H, Brandenburg M, Lindner SE, Breit B, Green DR (2011) Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol Cell 42(5):584–596CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen G, Cheng Y, Tang Y, Martinka M, Li G (2012) Role of Tip60 in human melanoma cell migration, metastasis, and patient survival. J Investig Dermatol 132(11):2632–2641CrossRefPubMedGoogle Scholar
  13. Cheng Q, Chen J (2010) Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9(3):472–478CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science:346–355Google Scholar
  15. Coffey K, Blackburn TJ, Cook S, Golding BT, Griffin RJ, Hardcastle IR, Hewitt L, Huberman K, McNeill HV, Newell DR, Roche C (2012) Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One 7(10):e45539CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286(5442):1162–1166CrossRefPubMedGoogle Scholar
  17. Cregan S, McDonagh L, Gao Y, Barr MP, O'Byrne KJ, Finn SP, Cuffe S, Gray SG (2016) KAT5 (Tip60) is a potential therapeutic target in malignant pleural mesothelioma. Int J Oncol 48(3):1290–1296CrossRefPubMedGoogle Scholar
  18. Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S, Kao HY, Xu Y, Willis J, Markowitz SD, Sedwick D (2010) DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 3(146):ra80CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dumas C, Lascu I, Morera S, Glaser P, Fourme R, Wallet V, Lacombe ML, Veron M, Janin J (1992) X-ray structure of nucleoside diphosphate kinase. EMBO J 11(9):3203PubMedPubMedCentralGoogle Scholar
  20. Elledge SJ, Zhou Z, Allen JB (1992) Ribonucleotide reductase: regulation, regulation, regulation. Trends Biochem Sci 17(3):119–123CrossRefPubMedGoogle Scholar
  21. Friedberg E, Elledge SJ, Lehman AR, Lindahl T, Muzi-Falconi M (2013) DNA repair, mutagenesis and other responses to DNA damage. Cold Spring Harbor Laboratory PressGoogle Scholar
  22. Fukagawa A, Ishii H, Miyazawa K, Saitoh M (2015) δEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells. Cancer medicine 4(1):125–135CrossRefPubMedGoogle Scholar
  23. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31(15):1869–1883CrossRefPubMedGoogle Scholar
  24. Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, Khanna KK (2000) Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res 60(12):3299–3304PubMedGoogle Scholar
  25. Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, Confalonieri S (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448(7157):1063–1067CrossRefPubMedGoogle Scholar
  26. Grézy A, Chevillard-Briet M, Trouche D, Escaffit F (2016) Control of genetic stability by a new heterochromatin compaction pathway involving the Tip60 histone acetyltransferase. Mol Biol Cell 27(4):599–607CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gurubhagavatula S, Liu G, Park S, Zhou W, Su L, Wain JC, Lynch TJ, Neuberg DS, Christiani DC (2004) XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol 22(13):2594–2601CrossRefPubMedGoogle Scholar
  28. Halkidou K, Gnanapragasam VJ, Mehta PB, Logan IR, Brady ME, Cook S, Leung HY, Neal DE, Robson CN (2003) Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22(16):2466–2477CrossRefPubMedGoogle Scholar
  29. Hu Y, Fisher JB, Koprowski S, McAllister D, Kim MS, Lough J (2009) Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev Dyn 238(11):2912–2921CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang X, Halicka HD, Darzynkiewicz Z (2004) Detection of histone H2AX phosphorylation on Ser-139 as an indicator of DNA damage (DNA double-strand breaks). Curr Protocol Cytom:7–27Google Scholar
  31. Huyen Y, Jeffrey PD, Derry WB, Rothman JH, Pavletich NP, Stavridi ES, Halazonetis TD (2004) Structural differences in the DNA binding domains of human p53 and its C. elegans ortholog Cep-1. Structure 12(7):1237–1243CrossRefPubMedGoogle Scholar
  32. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102(4):463–473CrossRefPubMedGoogle Scholar
  33. Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 27(20):7028–7040CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295(5562):2080–2083CrossRefPubMedGoogle Scholar
  35. Kaidi A, Jackson SP (2013) KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 498(7452):70–74CrossRefPubMedGoogle Scholar
  36. Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M, Ariga H, Inoue M (2000) Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 28(3):669–677CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16CrossRefPubMedGoogle Scholar
  38. Lascu I, Gonin P (2000) The catalytic mechanism of nucleoside diphosphate kinases. J Bioenerg Biomembr 32(3):237–246CrossRefPubMedGoogle Scholar
  39. Legube G, Linares LK, Tyteca S, Caron C, Scheffner M, Chevillard-Briet M, Trouche D (2004) Role of the histone acetyl transferase Tip60 in the p53 pathway. J Biol Chem 279(43):44825–44833CrossRefPubMedGoogle Scholar
  40. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331CrossRefPubMedGoogle Scholar
  41. Li L and Wang Y (2017) Crosstalk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair. J Biol Chem, pp.jbc-M117Google Scholar
  42. Liu N, Wang J, Wang J, Wang R, Liu Z, Yu Y, Lu H (2013) ING5 is a Tip60 cofactor that acetylates p53 in response to DNA damage. Cancer Res 73(12):3749–3760CrossRefPubMedGoogle Scholar
  43. Mattera L, Escaffit F, Pillaire MJ, Selves J, Tyteca S, Hoffmann JS, Gourraud PA, Chevillard-Briet M, Cazaux C, Trouche D (2009) The p400/Tip60 ratio is critical for colorectal cancer cell proliferation through DNA damage response pathways. Oncogene 28(12):1506–1517CrossRefPubMedGoogle Scholar
  44. Mo F, Zhuang X, Liu X, Yao PY, Qin B, Su Z, Zang J, Wang Z, Zhang J, Dou Z, Tian C (2016) Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol 12(4):226–232CrossRefPubMedPubMedCentralGoogle Scholar
  45. Naidu SR, Lakhter AJ, Androphy EJ (2012) PIASy-mediated Tip60 sumoylation regulates p53-induced autophagy. Cell Cycle 11(14):2717–2728CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7(3):683–694CrossRefPubMedGoogle Scholar
  47. Negritto MC (2010) Repairing double-strand DNA breaks. Nature Education 3(9):26Google Scholar
  48. Niida H, Katsuno Y, Sengoku M, Shimada M, Yukawa M, Ikura M, Ikura T, Kohno K, Shima H, Suzuki H, Tashiro S (2010) Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev 24(4):333–338CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ortega-Atienza S, Wong VC, DeLoughery Z, Luczak MW, Zhitkovich A (2016) ATM and KAT5 safeguard replicating chromatin against formaldehyde damage. Nucleic Acids Res 44(1):198–209CrossRefPubMedGoogle Scholar
  50. Pandey, A.K., Zhang, Y., Zhang, S., Li, Y., Tucker-Kellogg, G., Yang, H. and Jha, S., 2015. TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget, 6(38), p. 41290Google Scholar
  51. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187(1):112–126CrossRefPubMedGoogle Scholar
  52. Rajagopalan D, Pandey AK, Xiuzhen MC, Lee KK, Hora S, Zhang Y, Chua BH, Kwok HS, Bhatia SS, Deng LW, Tenen DG (2017) TIP60 represses telomerase expression by inhibiting Sp1 binding to the TERT promoter. PLoS Pathog 13(10):e1006681CrossRefPubMedPubMedCentralGoogle Scholar
  53. Reichard P (1993) From RNA to DNA, why so many ribonucleotide reductases? Sci-New York Then Washington 260:1773–1773CrossRefGoogle Scholar
  54. Rodwell, V., Bender, D., Botham, K.M., Kennelly, P.J. and Weil, P.A., 2015. Harpers illustrated biochemistry 30th edition. McGraw Hill ProfessionalGoogle Scholar
  55. Saito SI, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW (2002) ATM mediates phosphorylation at multiple p53 sites, including Ser46, in response to ionizing radiation. J Biol Chem 277(15):12491–12494CrossRefPubMedGoogle Scholar
  56. Sakuraba K, Yasuda T, Sakata M, Kitamura YH, Shirahata A, Goto T, Mizukami H, Saito M, Ishibashi K, Kigawa G, Nemoto H (2009) Down-regulation of Tip60 gene as a potential marker for the malignancy of colorectal cancer. Anticancer Res 29(10):3953–3955PubMedGoogle Scholar
  57. Sakuraba K, Yokomizo K, Shirahata A, Goto T, Saito M, Ishibashi K, Kigawa G, Nemoto H, Hibi K (2011) TIP60 as a potential marker for the malignancy of gastric cancer. Anticancer Res 31(1):77–79PubMedGoogle Scholar
  58. Sapountzi V, Logan IR, Robson CN (2006) Cellular functions of TIP60. Int J Biochem Cell Biol 38(9):1496–1509CrossRefPubMedGoogle Scholar
  59. Shaul Y, Merav BY (2005) Role of c-Abl in the DNA damage stress response. Cell Res 15(1):33–35CrossRefPubMedGoogle Scholar
  60. Shiota M, Yokomizo A, Masubuchi D, Tada Y, Inokuchi J, Eto M, Uchiumi T, Fujimoto N, Naito S (2010) Tip60 promotes prostate cancer cell proliferation by translocation of androgen receptor into the nucleus. Prostate 70(5):540–554PubMedGoogle Scholar
  61. Squatrito M, Gorrini C, Amati B (2006) Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 16(9):433–442CrossRefPubMedGoogle Scholar
  62. Stahel RA, Weder W, Lievens Y, Felip E (2010) Malignant pleural mesothelioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(suppl_5):v126–v128CrossRefPubMedGoogle Scholar
  63. Su WP, Ho YC, Wu CK, Hsu SH, Shiu JL, Huang JC, Chang SB, Chiu WT, Hung JJ, Liu TL, Wu WS (2017) Chronic treatment with cisplatin induces chemoresistance through the TIP60-mediated Fanconi anemia and homologous recombination repair pathways. Sci Rep 7:3879CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 102(37):13182–13187CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau LA, Whetstine JR, Price BD (2009) Histone H3 methylation links DNA damage detection to activation of the Tip60 tumor suppressor. Nature Cell Biol 11(11):1376CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sun Y, Jiang X, Price BD (2010) Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9(5):930–936CrossRefPubMedPubMedCentralGoogle Scholar
  67. Surget S, Khoury MP, Bourdon JC (2014) Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. OncoTargets Ther 7:57Google Scholar
  68. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24(6):841–851CrossRefPubMedPubMedCentralGoogle Scholar
  69. Takakura M, Kyo S, Kanaya T, Hirano H, Takeda J, Yutsudo M, Inoue M (1999) Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res 59(3):551–557PubMedGoogle Scholar
  70. Takino T, Nakada M, Li Z, Yoshimoto T, Domoto T, Sato H (2016) Tip60 regulates MT1-MMP transcription and invasion of glioblastoma cells through NF-κB pathway. Clin Exp Metastasis 33(1):45–52CrossRefPubMedGoogle Scholar
  71. Tang Y, Luo J, Zhang W, Gu W (2006a) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24(6):827–839CrossRefPubMedGoogle Scholar
  72. Tang Y, Luo J, Zhang W, Gu W (2006b) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24(6):827–839CrossRefPubMedGoogle Scholar
  73. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040CrossRefPubMedPubMedCentralGoogle Scholar
  74. Tsao N, Yang YC, Deng YJ, Chang ZF (2016) The direct interaction of NME3 with Tip60 in DNA repair. Biochem J 473(9):1237–1245CrossRefPubMedGoogle Scholar
  75. Xiao H, Chung J, Kao HY, Yang YC (2003) Tip60 is a co-repressor for STAT3. J Biol Chem 278(13):11197–11204CrossRefPubMedGoogle Scholar
  76. Xu Y, Liao R, Li N, Xiang R, Sun P (2014) Phosphorylation of Tip60 by p38α regulates p53-mediated PUMA induction and apoptosis in response to DNA damage. Oncotarget 5(24):12555CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhang J, Powell SN (2005) The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 3(10):531–539CrossRefPubMedGoogle Scholar
  78. Zhang Y, Subbaiah VK, Rajagopalan D, Tham CY, Abdullah LN, Toh TB, Gong M, Tan TZ, Jadhav SP, Pandey AK, Karnani N (2016) TIP60 inhibits metastasis by ablating DNMT1− SNAIL2-driven epithelial-mesenchymal transition program. J Mol Cell Biol 8(5):1–16CrossRefGoogle Scholar
  79. Zheng H, Seit-Nebi A, Han X, Aslanian A, Tat J, Liao R, Yates JR, Sun P (2013) A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence. Mol Cell 50(5):699–710CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM-and KAP-1 dependent pathway. Nat Cell Biol 8(8):870–876CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2018

Authors and Affiliations

  1. 1.Human Genetics Department, Medical Research InstituteAlexandria UniversityAlexandriaEgypt
  2. 2.Biochemistry Department, Medical Research InstituteAlexandria UniversityAlexandriaEgypt

Personalised recommendations