Journal of Applied Genetics

, Volume 58, Issue 1, pp 67–70 | Cite as

Cytomolecular discrimination of the Am chromosomes of Triticum monococcum and the A chromosomes of Triticum aestivum using microsatellite DNA repeats

  • Mária Megyeri
  • Péter Mikó
  • András Farkas
  • Márta Molnár-Láng
  • István Molnár
Plant Genetics • Short Communication


The cytomolecular discrimination of the Am- and A-genome chromosomes facilitates the selection of wheat-Triticum monococcum introgression lines. Fluorescence in situ hybridisation (FISH) with the commonly used DNA probes Afa family, 18S rDNA and pSc119.2 showed that the more complex hybridisation pattern obtained in T. monococcum relative to bread wheat made it possible to differentiate the Am and A chromosomes within homoeologous groups 1, 4 and 5. In order to provide additional chromosomal landmarks to discriminate the Am and A chromosomes, the microsatellite repeats (GAA)n, (CAG)n, (CAC)n, (AAC)n, (AGG)n and (ACT)n were tested as FISH probes. These showed that T. monococcum chromosomes have fewer, generally weaker, simple sequence repeat (SSR) signals than the A-genome chromosomes of hexaploid wheat. A differential hybridisation pattern was observed on 6Am and 6A chromosomes with all the SSR probes tested except for the (ACT)n probe. The 2Am and 2A chromosomes were differentiated by the signals given by the (GAA)n, (CAG)n and (AAC)n repeats, while only (GAA)n discriminated the chromosomes 3Am and 3A. Chromosomes 7Am and 7A could be differentiated by the lack of (GAA)n and (AGG)n signals on 7A. As potential landmarks for identifying the Am chromosomes, SSR repeats will facilitate the introgression of T. monococcum chromatin into wheat.


Triticum monococcum Microsatellite repeats Karyotypic analysis FISH 



This work was supported by a János Bolyai Research Scholarship from the Hungarian Academy of Sciences, by the Hungarian National Research Fund (K116277), by an OECD Fellowship (TAD/CRP JA00079297) and by the National Science and Technology Office (ALKOBEER OM00363).


  1. Adonina IG, Goncharov NP, Badaeva ED, Sergeeva EM, Petrash NV, Salina EA (2015) (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comp Cytogenet 9:533–547. doi: 10.3897/CompCytogen.v9i4.5120 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Badaeva ED, Amosova AV, Goncharov NP, Macas J, Ruban AS, Grechishnikova IV, Zoshchuk SA, Houben A (2015) A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet Genome Res 146:71–79. doi: 10.1159/000433458 CrossRefPubMedGoogle Scholar
  3. Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101:711–717. doi: 10.1007/s001220051535 CrossRefGoogle Scholar
  4. Cuadrado A, Cardoso M, Jouve N (2008) Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 120:210–219. doi: 10.1159/000121069 CrossRefPubMedGoogle Scholar
  5. Devos KM, Dubcovsky J, Dvořák J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288. doi: 10.1007/BF00220890 CrossRefPubMedGoogle Scholar
  6. Dover GA (1993) Evolution of genetic redundancy for advanced players. Curr Opin Genet Dev 3:902–910. doi: 10.1016/0959-437X(93)90012-E CrossRefPubMedGoogle Scholar
  7. Gerlach WL, Miller TE, Flavell RB (1980) The nucleolus organizers of diploid wheats revealed by in situ hybridization. Theor Appl Genet 58:97–100. doi: 10.1007/BF00263097 CrossRefPubMedGoogle Scholar
  8. Han F, Fedak G, Guo W, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics 170:1239–1245. doi: 10.1534/genetics.104.039263 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hancock JM (1996) Simple sequences and the expanding genome. Bioessays 18:421–425. doi: 10.1002/bies.950180512 CrossRefPubMedGoogle Scholar
  10. Jing HC, Kornyukhin D, Kanyuka K, Orford S, Zlatska A, Mitrofanova OP, Koebner R, Hammond-Kosack K (2007) Identification of variation in adaptively important traits and genome-wide analysis of trait-marker associations in Triticum monococcum. J Exp Bot 58:3749–3764. doi: 10.1093/jxb/erm225 CrossRefPubMedGoogle Scholar
  11. Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, Watanabe N, Kianian SF, Doležel J (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829. doi: 10.1534/genetics.104.039180 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escheria coli K-12. Nucleic Acid Res 15:5323–5338. doi: 10.1093/nar/15.13.5323
  13. McMurray CT (1995) Mechanisms of DNA expansion. Chromosoma 104:2–13. doi: 10.1007/BF00352220 PubMedGoogle Scholar
  14. Megyeri M, Farkas A, Varga M, Kovács G, Molnár-Láng M, Molnár I (2012) Karyotypic analysis of Triticum monococcum using standard repetitive DNA probes and simple sequence repeats. Acta Agron Hung 60:87–95. doi: 10.1556/AAgr.60.2012.2.1 CrossRefGoogle Scholar
  15. Miller TE, Hutchinson J, Reader SM (1983) The identification of the nucleolus organiser chromosomes of diploid wheat. Theor Appl Genet 65:145–147. doi: 10.1007/BF00264881 CrossRefPubMedGoogle Scholar
  16. Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M (2011) Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann Bot 107:65–76. doi: 10.1093/aob/mcq215 CrossRefPubMedGoogle Scholar
  17. Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494. doi: 10.1139/g93-067 CrossRefPubMedGoogle Scholar
  18. Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593. doi: 10.1139/g97-077 CrossRefPubMedGoogle Scholar
  19. Rey E, Molnár I, Doležel J (2015) Genomics of wild relatives and alien introgressions. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Springer International Publishing, Switzerland, pp 374–381, doi: 10.1007/978-3-319-23494-6_13

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2016

Authors and Affiliations

  1. 1.Agricultural Institute, Centre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary

Personalised recommendations