Skip to main content

Advertisement

Log in

PLAGL1: an important player in diverse pathological processes

  • Human Genetics • Review
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The PLAGL1 gene encodes a homonymous zinc finger protein that promotes cell cycle arrest and apoptosis through multiple pathways. The protein has been implicated in metabolic, genetic, and neoplastic illnesses, but the molecular mechanisms by which the protein PLAGL1 participates in such diverse processes remains to be elucidated. In this review, we focus mainly on the molecular biology of PLAGL1 and the relevance of its abnormalities to several pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdollahi A, Godwin AK, Miller PD, Getts LA, Schultz DC, Taguchi T, Testa JR, Hamilton TC (1997a) Identification of a gene containing zinc-finger motifs based on lost expression in malignantly transformed rat ovarian surface epithelial cells. Cancer Res 57:2029–2034

    CAS  PubMed  Google Scholar 

  • Abdollahi A, Roberts D, Godwin AK, Schultz DC, Sonoda G, Testa JR, Hamilton TC (1997b) Identification of a zinc-finger gene at 6q25: a chromosomal region implicated in development of many solid tumors. Oncogene 14:1973–1979

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Bryan L, Bryan J (2008) Neonatal diabetes mellitus. Endocr Rev 29:265–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baglivo I, Esposito S, De Cesare L, Sparago A, Anvar Z, Riso V, Cammisa M, Fattorusso R, Grimaldi G, Riccio A, Pedone PV (2013) Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1. FEBS Lett 587:1474–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barz T, Hoffmann A, Panhuysen M, Spengler D (2006) Peroxisome proliferator-activated receptor gamma is a Zac target gene mediating Zac antiproliferation. Cancer Res 66:11975–11982

    Article  CAS  PubMed  Google Scholar 

  • Basyuk E, Coulon V, Le Digarcher A, Coisy-Quivy M, Moles JP, Gandarillas A, Journot L (2005) The candidate tumor suppressor gene ZAC is involved in keratinocyte differentiation and its expression is lost in basal cell carcinomas. Mol Cancer Res 3:483–492

    Article  CAS  PubMed  Google Scholar 

  • Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, Cerrato F, Russo S, Ferraiuolo S, Rinaldi MM, Fischetto R, Lalatta F, Giordano L, Ferrari P, Cubellis MV, Larizza L, Temple IK, Mannens MM, Mackay DJ, Riccio A (2009) Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith–Wiedemann syndrome. Eur J Hum Genet 17:611–619

    Article  CAS  PubMed  Google Scholar 

  • Choufani S, Shuman C, Weksberg R (2010) Beckwith–Wiedemann syndrome. Am J Med Genet C Semin Med Genet 154C:343–354

    Article  CAS  PubMed  Google Scholar 

  • Ciani E, Hoffmann A, Schmidt P, Journot L, Spengler D (1999) Induction of the PAC1-R (PACAP-type I receptor) gene by p53 and Zac. Brain Res Mol Brain Res 69:290–294

    Article  CAS  PubMed  Google Scholar 

  • Cvetkovic D, Pisarcik D, Lee C, Hamilton TC, Abdollahi A (2004) Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol Oncol 95:449–455

    Article  CAS  PubMed  Google Scholar 

  • Czubryt MP, Lamoureux L, Ramjiawan A, Abrenica B, Jangamreddy J, Swan K (2010) Regulation of cardiomyocyte Glut4 expression by ZAC1. J Biol Chem 285:16942–16950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godlewski J, Krazinski BE, Kiezun J, Kwiatkowski P, Sulik M, Tenderenda M, Biernat W, Kmiec Z (2015) PLAGL1 protein is differentially expressed in the nephron segments and collecting ducts in human kidney. Folia Histochem Cytobiol 53:96–104

    Article  CAS  PubMed  Google Scholar 

  • Hisanaga-Oishi Y, Nishiwaki-Ueda Y, Nojima K, Ueda H (2014) Analysis of the expression of candidate genes for type 1 diabetes susceptibility in T cells. Endocr J 61:577–588

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Spengler D (2008) A new coactivator function for Zac1’s C2H2 zinc finger DNA-binding domain in selectively controlling PCAF activity. Mol Cell Biol 28:6078–6093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann A, Spengler D (2012) Transient neonatal diabetes mellitus gene Zac1 impairs insulin secretion in mice through Rasgrf1. Mol Cell Biol 32:2549–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann A, Ciani E, Boeckardt J, Holsboer F, Journot L, Spengler D (2003) Transcriptional activities of the zinc finger protein Zac are differentially controlled by DNA binding. Mol Cell Biol 23:988–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann A, Barz T, Spengler D (2006) Multitasking C2H2 zinc fingers link Zac DNA binding to coordinated regulation of p300-histone acetyltransferase activity. Mol Cell Biol 26:5544–5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SM, Stallcup MR (2000) Mouse Zac1, a transcriptional coactivator and repressor for nuclear receptors. Mol Cell Biol 20:1855–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SM, Schönthal AH, Stallcup MR (2001) Enhancement of p53-dependent gene activation by the transcriptional coactivator Zac1. Oncogene 20:2134–2143

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Platas I, Martin-Trujillo A, Cirillo D, Court F, Guillaumet-Adkins A, Camprubi C, Bourc’his D, Hata K, Feil R, Tartaglia G, Arnaud P, Monk D (2012) Characterization of novel paternal ncRNAs at the Plagl1 locus, including Hymai, predicted to interact with regulators of active chromatin. PLoS One 7, e38907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs DI, Mao Y, Fu A, Kelly WK, Zhu Y (2013) Dysregulated methylation at imprinted genes in prostate tumor tissue detected by methylation microarray. BMC Urol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M, Takada S, Takagi N, Arima T, Wake N, Kamimura K, Satomura K, Hermann R, Bonthron DT, Hayashizaki Y (2000) The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet 9:453–460

    Article  CAS  PubMed  Google Scholar 

  • Kas K, Voz ML, Hensen K, Meyen E, Van de Ven WJ (1998) Transcriptional activation capacity of the novel PLAG family of zinc finger proteins. J Biol Chem 273:23026–23032

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk AE, Krazinski BE, Godlewski J, Kiewisz J, Kwiatkowski P, Sliwinska-Jewsiewicka A, Kiezun J, Wierzbicki PM, Bodek G, Sulik M, Kmiec Z (2015) Altered expression of the PLAGL1 (ZAC1/LOT1) gene in colorectal cancer: Correlations to the clinicopathological parameters. Int J Oncol 47:951–962

    CAS  PubMed  Google Scholar 

  • Li Z, Ding Y, Zhu Y, Yin M, Le X, Wang L, Yang Y, Zhang Q (2014) Both gene deletion and promoter hyper-methylation contribute to the down-regulation of ZAC/PLAGL1 gene in gastric adenocarcinomas: a case control study. Clin Res Hepatol Gastroenterol 38:744–750

    Article  CAS  PubMed  Google Scholar 

  • Liu PY, Chan JY, Lin HC, Wang SL, Liu ST, Ho CL, Chang LC, Huang SM (2008) Modulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by Zac1 through the antagonistic regulators p53 and histone deacetylase 1 in HeLa Cells. Mol Cancer Res 6:1204–1214

    Article  CAS  PubMed  Google Scholar 

  • Liu PY, Hsieh TY, Liu ST, Chang YL, Lin WS, Wang WM, Huang SM (2011) Zac1, an Sp1-like protein, regulates human p21(WAF1/Cip1) gene expression in HeLa cells. Exp Cell Res 317:2925–2937

    Article  CAS  PubMed  Google Scholar 

  • Milani D, Pezzani L, Tabano S, Miozzo M (2014) Beckwith–Wiedemann and IMAGe syndromes: two very different diseases caused by mutations on the same gene. Appl Clin Genet 7:169–175

    PubMed  PubMed Central  Google Scholar 

  • Mirowska A, Sledzinski T, Smolenski RT, Swierczynski J (2014) Down-regulation of Zac1 gene expression in rat white adipose tissue by androgens. J Steroid Biochem Mol Biol 140:63–70

    Article  CAS  PubMed  Google Scholar 

  • Noh TW, Jeong HJ, Lee MK, Kim TS, Kim SH, Lee EJ (2009) Predicting recurrence of nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 94:4406–4413

    Article  CAS  PubMed  Google Scholar 

  • Pagotto U, Arzberger T, Theodoropoulou M, Grübler Y, Pantaloni C, Saeger W, Losa M, Journot L, Stalla GK, Spengler D (2000) The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 60:6794–6799

    CAS  PubMed  Google Scholar 

  • Piras G, El Kharroubi A, Kozlov S, Escalante-Alcalde D, Hernandez L, Copeland NG, Gilbert DJ, Jenkins NA, Stewart CL (2000) Zac1 (Lot1), a potential tumor suppressor gene, and the gene for epsilon-sarcoglycan are maternally imprinted genes: identification by a subtractive screen of novel uniparental fibroblast lines. Mol Cell Biol 20:3308–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribarska T, Goering W, Droop J, Bastian KM, Ingenwerth M, Schulz WA (2014) Deregulation of an imprinted gene network in prostate cancer. Epigenetics 9:704–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Edelkraut U, Daniel G, Hoffmann A, Spengler D (2014) Zac1 regulates cell cycle arrest in neuronal progenitors via Tcf4. Mol Cell Biol 34:1020–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Soejima H, Higashimoto K (2013) Epigenetic and genetic alterations of the imprinting disorder Beckwith–Wiedemann syndrome and related disorders. J Hum Genet 58:402–409

    Article  CAS  PubMed  Google Scholar 

  • Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J, Journot L (1997) Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 16:2814–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee L, Lim DH, Dias RP, Baudement MO, Slater AA, Kirby G, Hancocks T, Stewart H, Hardy C, Macdonald F, Maher ER (2013) Epimutation profiling in Beckwith–Wiedemann syndrome: relationship with assisted reproductive technology. Clin Epigenetics 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Theodoropoulou M, Zhang J, Laupheimer S, Paez-Pereda M, Erneux C, Florio T, Pagotto U, Stalla GK (2006) Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res 66:1576–1582

    Article  CAS  PubMed  Google Scholar 

  • Theodoropoulou M, Tichomirowa MA, Sievers C, Yassouridis A, Arzberger T, Hougrand O, Deprez M, Daly AF, Petrossians P, Pagotto U, Beckers A, Stalla GK (2009) Tumor ZAC1 expression is associated with the response to somatostatin analog therapy in patients with acromegaly. Int J Cancer 125:2122–2126

    Article  CAS  PubMed  Google Scholar 

  • Theodoropoulou M, Stalla GK, Spengler D (2010) ZAC1 target genes and pituitary tumorigenesis. Mol Cell Endocrinol 326:60–65

    Article  CAS  PubMed  Google Scholar 

  • Valente T, Auladell C (2001) Expression pattern of Zac1 mouse gene, a new zinc-finger protein that regulates apoptosis and cellular cycle arrest, in both adult brain and along development. Mech Dev 108:207–211

    Article  CAS  PubMed  Google Scholar 

  • Valente T, Junyent F, Auladell C (2005) Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: differential phenotype of the Zac1-expressing cells during development. Dev Dyn 233:667–679

    Article  CAS  PubMed  Google Scholar 

  • Valleley EM, Cordery SF, Carr IM, MacLennan KA, Bonthron DT (2010) Loss of expression of ZAC/PLAGL1 in diffuse large B-cell lymphoma is independent of promoter hypermethylation. Genes Chromosomes Cancer 49:480–486

    CAS  PubMed  Google Scholar 

  • Varrault A, Ciani E, Apiou F, Bilanges B, Hoffmann A, Pantaloni C, Bockaert J, Spengler D, Journot L (1998) hZAC encodes a zinc finger protein with antiproliferative properties and maps to a chromosomal region frequently lost in cancer. Proc Natl Acad Sci U S A 95:8835–8840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varrault A, Bilanges B, Mackay DJ, Basyuk E, Ahr B, Fernandez C, Robinson DO, Bockaert J, Journot L (2001) Characterization of the methylation-sensitive promoter of the imprinted ZAC gene supports its role in transient neonatal diabetes mellitus. J Biol Chem 276:18653–18656

    Article  CAS  PubMed  Google Scholar 

  • Vieria Neto L, Wildemberg LE, Colli LM, Kasuki L, Marques NV, Moraes AB, Gasparetto EL, Takiya CM, Castro M, Gadelha MR (2013) ZAC1 and SSTR2 are downregulated in non-functioning pituitary adenomas but not in somatotropinomas. PLoS One 8, e77406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WM, Liu ST, Huang SM, Lin WS, Chen SG, Chang YL (2011) Zac1 functional interactions mediate AP-1 transcriptional activity. Biochim Biophys Acta 1813:2050–2060

    Article  CAS  PubMed  Google Scholar 

  • Wu CW, Farrell GC, Yu J (2012) Functional role of peroxisome-proliferator-activated receptor γ in hepatocellular carcinoma. J Gastroenterol Hepatol 27:1665–1669

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Karen Meaburn and Dr. Tom Misteli for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Antonio Parada.

Ethics declarations

Funding

This study was funded by the National Council of Sciences and Technologies (CONICET); Argentine Agency for Science and Technology. Grant ANPCyT–FONCyT, PICT-2011-1897 to Luis A. Parada. The funders had no role in the preparation of the manuscript and the decision to publish.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by: Michal Witt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega-Benedetti, A.F., Saucedo, C., Zavattari, P. et al. PLAGL1: an important player in diverse pathological processes. J Appl Genetics 58, 71–78 (2017). https://doi.org/10.1007/s13353-016-0355-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-016-0355-4

Keywords

Navigation