Journal of Applied Genetics

, Volume 57, Issue 4, pp 527–530 | Cite as

The use of runs of homozygosity for estimation of recent inbreeding in Holstein cattle

  • A. Gurgul
  • T. Szmatoła
  • P. Topolski
  • I. Jasielczuk
  • K. Żukowski
  • M. Bugno-Poniewierska
Animal Genetics • Short Communication

Abstract

Controlling inbreeding in livestock populations is of great importance because excess relatedness among animals leads to a rapid loss of genetic variation and to adverse phenotypical effects associated with an inbreeding depression. Recent advances in genotyping technology have made it possible to study inbreeding at a molecular level by the analysis of genome-wide single nucleotide polymorphism panels. In this study, we used BovineSNP50 assay (Illumina) to estimate genomic inbreeding coefficient in 298 Holstein cattle by the analysis of the genome portion in runs of homozygosity (FROH) or using genomic relationship matrix (FGRM), and compared this data with conventional pedigree-based inbreeding coefficients (FPED). Weak or moderate Spearman’s rank correlations were observed between FROH and FPED which depended on the ROH length categories used for calculations and inclusion of animals with different number of complete generations registered in pedigrees. The highest correlations were observed when using ROH with lengths over 8 Mb (0.334). The correlations tended to increase as pedigree depth increased, and were the highest for animals with seven complete generations of pedigree data. FGRM correlated poorly with pedigree-based estimates, which suggests that ROH-based inbreeding coefficients better reflect recent relatedness among animals.

Keywords

Inbreeding ROH Holstein 

References

  1. Bjelland D, Weigel K, Vukasinovic N, Nkrumah J (2013) Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. J Dairy Sci 96:4697–4706CrossRefPubMedGoogle Scholar
  2. Boichard D (2007) PEDIG: a Fortran package for pedigree analysis suited for large populations. Manual — Updated Version 2007Google Scholar
  3. Broman KW, Weber JL (1999) Long homozygous chromosomal segments in reference families from the Centre d’Etude du Polymorphisme Humain. Am J Hum Genet 65:1493–1500CrossRefPubMedPubMedCentralGoogle Scholar
  4. Carothers AD, Rudan I, Kolcic I, Polasek O, Hayward C, Wright AF, Campbell H, Teague P, Hastie ND, Weber JL (2006) Estimating human inbreeding coefficients: comparison of genealogical and marker heterozygosity approaches. Ann Hum Genet 70:666–676CrossRefPubMedGoogle Scholar
  5. Charlesworth D, Willis JH (2009) Fundamental concepts in genetics. The genetics of inbreeding depression. Nat Rev Genet 10:783–796CrossRefPubMedGoogle Scholar
  6. Ferencakovic M, Hamzic E, Gredler B, Curik I, Solkner J (2011) Runs of homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh cattle. ACS 76:325–328Google Scholar
  7. Ferenčaković M, Hamzić E, Gredler B, Solberg TR, Klemetsdal G, Curik I, Sölkner J (2013a) Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. J Anim Breed Genet 130:286–293CrossRefPubMedGoogle Scholar
  8. Ferenčaković M, Sölkner J, Curik I (2013b) Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. GSE 45:42PubMedPubMedCentralGoogle Scholar
  9. Hamzić E (2011) Levels of inbreeding derived from runs of homozygosity: a comparison of Austrian and Norwegian cattle breeds. Master of Science thesis. University of Natural Resources and Life Sciences, ViennaGoogle Scholar
  10. Malécot G (1948) Les mathématiques de l’hérédité. Masson & Cie, Paris, pp 1–64Google Scholar
  11. Marras G, Gaspa G, Sorbolini S, Dimauro C, Ajmone-Marsan P, Valentini A, Williams JL, Macciotta NPP (2014) Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Anim Genet 46:110–121CrossRefPubMedGoogle Scholar
  12. McQuillan R, Leutenegger AL, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, Smolej-Narancic N, Janicijevic B, Polasek O, Tenesa A, Macleod AK, Farrington SM, Rudan P, Hayward C, Vitart V, Rudan I, Wild SH, Dunlop MG, Wright AF, Campbell H, Wilson JF (2008) Runs of homozygosity in European populations. Am J Hum Genet 83:359–372CrossRefPubMedPubMedCentralGoogle Scholar
  13. Purfield DC, Berry DP, McParland S, Bradley DG (2012) Runs of homozygosity and population history in cattle. BMC Genet 13:70CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ron M, Blanc Y, Band M, Ezra E, Weller JI (1996) Misidentification rate in the Israeli dairy cattle population and its implications for genetic improvement. J Dairy Sci 79:676–681CrossRefPubMedGoogle Scholar
  15. VanRaden P (1992) Accounting for inbreeding and crossbreeding in genetic evaluation for large populations. J Dairy Sci 75:3136–3144CrossRefGoogle Scholar
  16. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423CrossRefPubMedGoogle Scholar
  17. Westell RA, Quaas RL, Van Vleck LD (1988) Genetic groups in an animal model. J Dairy Sci 71:1310–1318CrossRefGoogle Scholar
  18. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82CrossRefPubMedPubMedCentralGoogle Scholar
  19. Zhang L, Orloff MS, Reber S, Li S, Zhao Y et al (2013) cgaTOH: extended approach for identifying tracts of homozygosity. PLoS One 8:e57772CrossRefPubMedPubMedCentralGoogle Scholar
  20. Zhang Q, Calus MP, Guldbrandtsen B, Lund MS, Sahana G (2015) Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genet 16:88CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2016

Authors and Affiliations

  • A. Gurgul
    • 1
  • T. Szmatoła
    • 1
  • P. Topolski
    • 2
  • I. Jasielczuk
    • 1
  • K. Żukowski
    • 2
  • M. Bugno-Poniewierska
    • 1
  1. 1.Department of Genomics and Molecular Biology, Laboratory of GenomicsNational Research Institute of Animal ProductionBalicePoland
  2. 2.Department of Animal Breeding and GeneticsNational Research Institute of Animal ProductionBalicePoland

Personalised recommendations