Journal of Applied Genetics

, Volume 57, Issue 2, pp 275–283 | Cite as

First report on the bacterial diversity in the distal gut of dholes (Cuon alpinus) by using 16S rRNA gene sequences analysis

  • Lei Chen
  • Honghai ZhangEmail author
  • Guangshuai Liu
  • Weilai Sha
Microbial Genetics • Short Communication


The aim of this study was to investigate the bacterial community in the distal gut of dholes (Cuon alpinus) based on the analysis of bacterial 16S rRNA gene sequences. Fecal samples were collected from five healthy unrelated dholes captured from Qilian Mountain in Gansu province of China. The diversity of the fecal bacteria community was investigated by constructing a polymerase chain reaction (PCR)-amplified 16S rRNA gene clone library. Bacterial 16S rRNA gene was amplified by using universal bacterial primers 27F and 1492R. A total of 275 chimera-free near full length 16S rRNA gene sequences were collected, and 78 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified according to the 97 % sequence similarity. Forty-two OTUs (53.8 %) showed less than 98 % sequence similarity to 16S rRNA gene sequences reported previously. Phylogenetic analysis demonstrated that dhole bacterial community comprised five different phyla, with the majority of sequences being classified within the phylum Bacteroidetes (64.7 %), followed by Firmicutes (29.8 %), Fusobacteria (4.7 %),Proteobacteria (0.4 %), and Actinobacteria (0.4 %). The only order Bacteroidales in phylum Bacteroidetes was the most abundant bacterial group in the intestinal bacterial community of dholes. Firmicutes and Bacteroidetes were the two most diverse bacterial phyla with 46.2 and 44.9 % of OTUs contained, respectively. Bacteroidales and Clostridiales were the two most diverse bacterial orders that contained 44.9 and 39.7 % of OTUs, respectively.


dhole (Cuon alpinusIntestinal bacterial diversity Phylogenetic analysis 16S rRNA gene 



This research was supported by the Special Fund for Forest Scientific Research in the Public Welfare (201404420), the National Natural Science Fund of China (31172119, 31372220, 31400473), the Natural Science Fund of Shandong Province of China (ZR2011CM009), the Ph.D. Programs Foundation of Ministry of Education of China (20113705110001), The Science and Technology Plan Project for Colleges and Universities in Shandong Province of China (J14LE16), the Doctoral Scientific Research Fund of Qufu Normal University, the College Science Fund of Qufu Normal University (XJ201207).

Supplementary material

13353_2015_319_MOESM1_ESM.doc (26 kb)
ESM 1 (DOC 25 kb)


  1. Atlas R, Bartha R (1998) Microbial ecology: fundamentals and applications. Addison–Wesley PublishingReadingGoogle Scholar
  2. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host–bacterial mutualism in the human intestine. Science 307:1915–1920CrossRefPubMedGoogle Scholar
  3. Cohen JA (1978) Cuon alpinus. Mamm Species 100:1–3CrossRefGoogle Scholar
  4. Daly K, Stewart CSFHJ, Shirazi-Beechey SP (2001) Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol Ecol 38:141–151CrossRefGoogle Scholar
  5. Durbin L, Venkataraman A, Hedges S, Duckworth JW (2004) Dhole (Cuon alpinus). In: IUCN/SSC Canid Specialist Group, Sillero-Zubiri C, Hoffman M, Macdonald DW (eds) Canids: foxes, wolves, jackals and dogs. Information Press, Oxford, pp 210–219Google Scholar
  6. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638CrossRefPubMedPubMedCentralGoogle Scholar
  7. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  8. Frey JC, Rothman JM, Pell AN, Nizeyi JB, Cranfield MR, Angert ER (2006) Fecal bacterial diversity in a wild gorilla. Appl Environ Microbiol 72:3788–3792CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359CrossRefPubMedPubMedCentralGoogle Scholar
  10. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264CrossRefGoogle Scholar
  11. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefGoogle Scholar
  12. Iyengar A, Babu VN, Hedges S, Venkataraman AB, Maclean N, Morin PA (2005) Phylogeography, genetic structure, diversity in the dhole (Cuon alpinus). Mol Ecol 14:2281–2297CrossRefPubMedGoogle Scholar
  13. Kohl KD, Weiss RB, Dale C, Dearing MD (2011) Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis 54:47–54CrossRefGoogle Scholar
  14. Kumar S, Tamura K, Nei M (2004) MEGA: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  15. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K (2002) Culture–independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(13):220–230CrossRefPubMedPubMedCentralGoogle Scholar
  18. Middelbos IS, Vester Boler BM, Qu A, White BA, Swanson KS, Fahey GC Jr (2010) Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS ONE 5, e9768CrossRefPubMedPubMedCentralGoogle Scholar
  19. Monteils V, Cauquil L, Combes S, Godon JJ, Gidenne T (2008) Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiol Ecol 66:620–629CrossRefPubMedPubMedCentralGoogle Scholar
  20. Moran NA (2006) Symbiosis (a primer). Curr Biol 16:866–871CrossRefGoogle Scholar
  21. Ritchie LE, Steiner JM, Suchodolski JS (2008) Assessment of microbial diversity along the feline intestinal tract using16S rRNA gene analysis. FEMS Microbiol Ecol 66:590–598CrossRefPubMedGoogle Scholar
  22. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506CrossRefPubMedPubMedCentralGoogle Scholar
  23. Suchodolski JS, Camacho J, Steiner JM (2008) Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol Ecol 66:567–578CrossRefPubMedGoogle Scholar
  24. Suchodolski JS, Dowd SE, Westermarck E, Steiner JM, Spillman T, Wolcott RD, Spillmann T, Harmoinen JA (2009) The effect of macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rDNA sequencing. BMC Microbiol 9:210CrossRefPubMedPubMedCentralGoogle Scholar
  25. Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, Nelson KE, Torralba M, Henrissat B, Coutinho PM, Cann IKO, White BA, Fahey GC Jr (2011) Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J 5:639–649CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  27. Thenius E (1954) On the origins of the dhole. Osterr Zool Z 5:377–388Google Scholar
  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Res 2:4673–4680CrossRefGoogle Scholar
  29. Wang M, Ahrne S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231CrossRefPubMedGoogle Scholar
  30. Zhang HH, Chen L (2010) Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 37:4013–4022CrossRefPubMedGoogle Scholar
  31. Zhang HH, Chen L (2011) The complete mitochondrial genome of dhole Cuon alpinus: phylogenetic analysis and dating evolutionary divergence within canidae. Mol Biol Rep 38:1651–1660CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2015

Authors and Affiliations

  • Lei Chen
    • 1
  • Honghai Zhang
    • 1
    Email author
  • Guangshuai Liu
    • 1
  • Weilai Sha
    • 1
  1. 1.College of Life ScienceQufu Normal UniversityQufuChina

Personalised recommendations