Journal of Applied Genetics

, Volume 57, Issue 1, pp 37–44 | Cite as

Mapping of seedling resistance in barley to Puccinia striiformis f. sp. pseudohordei

  • L. N. Kamino
  • D. Singh
  • M. A. Pallotta
  • N. C. Collins
  • R. F. Park
Plant Genetics • Original Paper


The barley grass stripe rust (BGYR) pathogen Puccinia striiformis f. sp. pseudohordei was first detected in Australia in 1997. While studies have established that it is virulent on wild barley grass, and can infect several barley cultivars, the basis of genetic resistance to this pathogen in barley is largely unknown. Understanding the genetic basis of host resistance and ensuring the selection of germplasm with multiple resistance genes are important to mitigate the potential impact of BGYR in barley production. Genetic analysis of seedling resistance to BGYR in two barley doubled haploid populations, Amaji Nijo/WI2585 (AN/WI) and Galleon/Haruna Nijo (GL/HN), indicated that resistance is governed by several genes. Marker regression analysis of the seedling resistance data from the AN/WI population detected a major QTL, BGYR_WI1 (resistance contributed by WI2585 with the closest marker explaining 52 % of the total phenotypic effect) on chromosome 1HS, flanked by the loci Xabg59 and Xabc310b at map positions 0.0 and 6.9 cM, respectively. Similarly, a major QTL, BGYR_HN1, (resistance contributed by Haruna Nijo with the closest marker explaining 70 % of the total phenotypic effect) was detected in the GL/HN population and was mapped to 1HS, flanked by the loci Xbcd135 and XHOR1 at map positions 12.8 and 24.5 cM, respectively. In addition, several minor loci that provided resistance against BGYR were detected in both populations. While defined QTL intervals were large, the analysis nonetheless provides new information on sources of major QTL controlling resistance to BGYR.


Barley grass stripe rust (BGYR) Formae speciales Gene mapping Molecular markers Resistance 


  1. Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510PubMedCrossRefGoogle Scholar
  2. Borovkova IG, Jin Y, Steffenson BJ (1998) Chromosomal location and genetic relationship of leaf rust resistance genes Rph9 and Rph12 in barley. Phytopathology 88:76–80PubMedCrossRefGoogle Scholar
  3. Cakir M, Spackman M, Wellings CR, Galwey NW, Moody DB, Poulsen D, Ogbonnaya FC, Vivar H (2003) Molecular mapping as a tool for pre-emptive breeding for resistance to the exotic barley pathogen, Puccinia striiformis f. sp hordei. Aust J Agric Res 54:1351–1357CrossRefGoogle Scholar
  4. Cakir M, Gupta S, Li C, Hayden M, Mather D, Ablett G, Platz G, Broughton S, Chalmers K, Loughman R, Jones MK, Lance RCM (2011) Genetic mapping and QTL analysis of disease resistance traits in the barley population Baudin x AC Metcalfe. Crop Past Sci 62:152–161CrossRefGoogle Scholar
  5. Castro AJ, Capettini F, Corey AE, Filichkina T, Hayes PM, Kleinhofs A, Kudrna D, Richardson K, Sandoval-Islas S, Rossi C, Vivar H (2003a) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930PubMedCrossRefGoogle Scholar
  6. Castro AJ, Chen XM, Hayes PM, Johnston M (2003b) Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Sci 43:651–659CrossRefGoogle Scholar
  7. Chen FQ, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994) Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88:215–219PubMedGoogle Scholar
  8. Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL, Peng YL, Wang BT (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101CrossRefGoogle Scholar
  9. Close TJ, Bhat PR, Lonardi S, Wu YH, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao SAM, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582–594PubMedPubMedCentralCrossRefGoogle Scholar
  10. Derevnina L, Zhou M, Singh D, Wellings CR, Park RF (2015) The genetic basis of resistance to barley grass yellow rust (Puccinia striiformis f. sp. pseudo-hordei) in Australian barley cultivars. Theor Appl Genet 128:187–197PubMedCrossRefGoogle Scholar
  11. Golegaonkar PG, Karaoglu H, Park RF (2009) Molecular mapping of leaf rust resistance gene Rph14 in Hordeum vulgare. Theor Appl Genet 119:1281–1288PubMedCrossRefGoogle Scholar
  12. Golegaonkar PG, Wellings CR, Singh D, Park RF (2013) Genetic and molecular analyses of resistance to a variant of Puccinia striiformis in barley. J Appl Genet 54:1–9PubMedCrossRefGoogle Scholar
  13. Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391PubMedCrossRefGoogle Scholar
  14. International Grain Council (2013) (accessed on 30th Apr 2014)
  15. Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol Plant-Microbe Interact 19:1270–1279PubMedCrossRefGoogle Scholar
  16. Keiper FJ, Hayden MJ, Park RF, Wellings CR (2003) Molecular genetic variability of Australian isolates of five cereal rust pathogens. Mycol Res 107:545–556PubMedCrossRefGoogle Scholar
  17. Korff MV, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590CrossRefGoogle Scholar
  18. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  19. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  20. Manly KF, Cudmore RH Jr, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932PubMedCrossRefGoogle Scholar
  21. Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500PubMedCrossRefGoogle Scholar
  22. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts. An atlas of resistance genes. CSIRO, Mebourne, Australia p 9Google Scholar
  23. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245CrossRefGoogle Scholar
  24. Niks RE (2014) How specific is non-hypersensitive host and nonhost resistance of barley to rust and mildew fungi? J Integr Agric 13:244–254CrossRefGoogle Scholar
  25. Pallotta MA, Asayama S, Reinheimer JM, Davies PA, Barr AR, Jefferies SP, Chalmers KJ, Lewis J, Collins HM, Roumeliotis S, Logue SJ, Coventry SJ, Lance RCM, Karakousis A, Lim P, Verbyla AP, Eckermann PJ (2003) Mapping and QTL analysis of the barley population Amagi Nijo x WI2585. Aust J Agric Res 54:1141–1144CrossRefGoogle Scholar
  26. Park RF (2008) Breeding cereals for rust resistance in Australia. Plant Pathol 57:591–602CrossRefGoogle Scholar
  27. Park RF, Poulsen D, Barr AR, Cakir M, Moody DB, Raman H, Read BJ (2003) Mapping genes for resistance to Puccinia hordei in barley. Aust J Agric Res 54:1323–1333CrossRefGoogle Scholar
  28. Spackman ME, Ogbonnaya FC, Brown JS (2010) Hypervariable RAPD, ISSR and SSR markers generate robust taxonomic groups among Puccinia striiformis formae speciales of importance to Australian agriculture. Australas Plant Pathol 39:226–233CrossRefGoogle Scholar
  29. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. US Dep Agric. ARS E617:1–53Google Scholar
  30. Sui XX, He ZH, Lu YM, Wang ZL, Xia XC (2010) Molecular mapping of a non-host resistance gene YrpstY1 in barley (Hordeum vulgare L.) for resistance to wheat stripe rust. Hereditas 147:176–182PubMedCrossRefGoogle Scholar
  31. Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047PubMedGoogle Scholar
  32. Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589CrossRefGoogle Scholar
  33. Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270PubMedCrossRefGoogle Scholar
  34. Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement: genomics approaches and platforms, vol 1. Springer, DordrechtGoogle Scholar
  35. Von Wettstein-Knowles P (1992) Cloned and mapped genes: current status. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology, and biotechnology. CAB. Int, Wallingford, pp 73–98Google Scholar
  36. Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agric Res 58:567–575CrossRefGoogle Scholar
  37. Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141CrossRefGoogle Scholar
  38. Wellings CR, Burdon JJ, McIntosh RA, Wallwork H, Raman H, Murray GM (2000a) A new variant of Puccinia striiformis causing stripe rust on barley and wild Hordeum species in Australia. Plant Pathol 49:803CrossRefGoogle Scholar
  39. Wellings CR, Read B, Moody D (2000b) Stripe rust affecting barley in Australia-current and potential threats. In: Proceedings 8th International Barley Genetics Symposium, Adelaide, Australia, October 2000, vol III, pp 197–199Google Scholar
  40. Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang JP, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206–227PubMedPubMedCentralCrossRefGoogle Scholar
  41. Willsmore KL, Eckermann P, Varshney RK, Graner A, Langridge P, Pallotta M, Cheong J, Williams KJ (2006) New eSSR and gSSR markers added to Australian barley maps. Aust J Agric Res 57:953–959CrossRefGoogle Scholar
  42. Zhou MX, Li HB (2008) Identification of molecular markers associated with powdery mildew and barley grass stripe rust resistance. In: Proceedings of the 10th International Barley Genetics Symposium, Alexandria, Egypt, April 2008, pp 381–384Google Scholar
  43. Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2015

Authors and Affiliations

  1. 1.Plant Breeding Institute (PBI)The University of SydneyNarellanAustralia
  2. 2.Australian Centre for Plant Functional GenomicsUniversity of AdelaideUrrbraeAustralia

Personalised recommendations