Advertisement

Journal of Applied Genetics

, Volume 54, Issue 4, pp 427–433 | Cite as

Analysis of chromosomal polymorphism in barley (Hordeum vulgare L. ssp. vulgare) and between H. vulgare and H. chilense using three-color fluorescence in situ hybridization (FISH)

  • É. Szakács
  • K. Kruppa
  • M. Molnár-Láng
Plant Genetics • Short Communication

Abstract

The aim of the present work was to study chromosomal polymorphism within cultivated barley (Hordeum vulgare ssp. vulgare) using three-color fluorescence in situ hybridization (FISH). The physical distribution of the most frequently used, highly repetitive DNA sequences (GAA)7 specific for pericentromeric heterochromatic regions, the ribosomal DNA clone pTa71, specific for the 45S rDNA, and the barley-specific telomere-associated sequence HvT01, was investigated to reveal genetic diversity in metaphase spreads of ten barley genotypes with diverse geographical origin, growth habit and row number. A wild relative of barley, Hordeum chilense was also studied in order to compare the polymorphism between and within Hordeum species. Significant differences in the hybridization patterns of all three DNA probes could be detected between the two related species, but only probes pTa71 and HvT01 showed variation in the intensity and/or position of hybridization sites among genotypes of H. vulgare ssp. vulgare. The extent of polymorphism was less than that earlier reported for molecular markers and was restricted to the long chromosome arms, with differences between the chromosomes. 1H and 3H proved to be the most variable chromosomes and 4H and 6H the most conserved.

Keywords

Chromosomal polymorphism Hordeum chilense Hordeum vulgare ssp. vulgare Karyotype Three-color FISH 

Notes

Acknowledgments

This study was funded by the the Hungarian National Research Fund (OTKA K 104382) and TÁMOP projects (4.2.2.-B-10/1-2010-0025 and 4.2.2.A-11/1/KONV-2012-0064), and was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program – Elaborating and operating an inland student and researcher personal support system convergence program’. The project was subsidized by the European Union and co-financed by the European Social Fund.

References

  1. Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595. doi: 10.1007/s00122-004-1657-1 PubMedCrossRefGoogle Scholar
  2. Belostotsky DA, Ananiev EV (1990) Characterization of relic DNA from barley genome. Theor Appl Genet 80:374–380. doi: 10.1007/BF00210075 CrossRefGoogle Scholar
  3. Bothmer R, Jacobsen N, Baden C, Jørgensen R, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum. 2nd edn. Systematic and ecogeographic studies on crop genepools 7. International Plant Genetic Resources Institute, Rome, p 129Google Scholar
  4. Broun P, Ganal MW, Tanksley SD (1992) Telomeric arrays display high levels of heritable polymorphism among closely related plant varieties. Proc Natl Acad Sci U S A 89:1354–1357. doi: 10.1073/pnas.89.4.1354 PubMedCrossRefGoogle Scholar
  5. Brown SE, Stephens JL, Lapitan NLV, Knudson DL (1999) FISH landmarks for barley chromosomes (Hordeum vulgare L.). Genome 42:274–281. doi: 10.1139/gen-42-2-274 PubMedGoogle Scholar
  6. Carmona A, Friero E, de Bustos A, Jouve N, Cuadrado A (2013) Cytogenetic diversity of SSR motifs within and between Hordeum species carrying the H genome: H. vulgare L. and H. bulbosum L. Theor Appl Genet 126:949–961. doi: 10.1007/s00122-012-2028-y PubMedCrossRefGoogle Scholar
  7. Castillo A, Budak H, Varshney RK, Dorado G, Graner A, Hernandez P (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8:97. doi: 10.1186/1471-2229-8-97 PubMedCrossRefGoogle Scholar
  8. Chiapparino E, Lee D, Donini P (2004) Genotyping single nucleotide polymorphisms in barley by tetra-primer ARMS–PCR. Genome 47:414–420. doi: 10.1139/g03-130 PubMedCrossRefGoogle Scholar
  9. Cuadrado A, Ceoloni C, Jouve N (1995) Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization. Genome 38:1061–1069. doi: 10.1139/g95-142 PubMedCrossRefGoogle Scholar
  10. de Bustos A, Cuadrado A, Soler C, Jouve N (1996) Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. Chromosome Res 4:491–499. doi: 10.1007/BF02261776 PubMedCrossRefGoogle Scholar
  11. Ellis RP, McNicol JW, Baird E, Booth A, Lawrence P (1997) The use of AFLPs to examine genetic relatedness in barley. Mol Breed 3:359–369. doi: 10.1023/A:1009602321815 CrossRefGoogle Scholar
  12. Forster BP, Pakniyat H, Macaulay M, Matheson W, Phillips MS, Thomas WTB, Powell W (1994) Variation in the leaf sodium content of the Hordeum vulgare (barley) cultivar Maythorpe and its derived mutant cv. Golden promise. Heredity 73:249–253. doi: 10.1038/hdy.1994.130 CrossRefGoogle Scholar
  13. Gerlach WL, Bedbrook JL (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. doi: 10.1093/nar/7.7.1869 PubMedCrossRefGoogle Scholar
  14. Hagras AAA, Kishii M, Tanaka H, Sato K, Tsujimoto H (2005) Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes Genet Syst 80:147–159. doi: 10.1266/ggs.80.147 PubMedCrossRefGoogle Scholar
  15. Hasterok R, Langdon T, Taylor S, Jenkins G (2002) Combinatorial labelling of DNA probes enables multicolour fluorescence in situ hybridisation in plants. Folia Histochem Cytobiol 40:319–323PubMedGoogle Scholar
  16. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridisation (FISH) in plant genome research. Genome 49:1057–1068. doi: 10.1139/g06-076 PubMedCrossRefGoogle Scholar
  17. Jiang J, Friebe B, Gill BS (1994) Chromosome painting of amigo wheat. Theor Appl Genet 89:811–813. doi: 10.1007/BF00224501 Google Scholar
  18. Kakeda K, Fukui K, Yamagata H (1991) Heterochromatic differentiation in barley chromosomes revealed by C- and N-banding techniques. Theor Appl Genet 81:144–150. doi: 10.1007/BF00215715 CrossRefGoogle Scholar
  19. Kato A (2011) High-density fluorescence in situ hybridization signal detection on barley (Hordeum vulgare L.) chromosomes with improved probe screening and reprobing procedures. Genome 54:151–159. doi: 10.1139/G10-098 PubMedCrossRefGoogle Scholar
  20. Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018. doi: 10.1139/g92-155 CrossRefGoogle Scholar
  21. Leitch IJ, Leitch AR, Heslop-Harrison JS (1991) Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labelled fluorescent probes. Genome 34:329–333. doi: 10.1139/g91-054 CrossRefGoogle Scholar
  22. Linde-Laursen B (1978) Giemsa C-banding of barley chromosomes. I. Banding pattern polymorphism. Hereditas 88:55–64. doi: 10.1111/j.1601-5223.1992.tb00213.x CrossRefGoogle Scholar
  23. Linde-Laursen I, von Bothmer R, Jacobsen N (1992) Relationships in the genus Hordeum: Giemsa C-banded karyotypes. Hereditas 116:111–116. doi: 10.1111/j.1601-5223.1992.tb00808.x Google Scholar
  24. Martín A, Cabrera A (2005) Cytogenetics of Hordeum chilense: current status and considerations with reference to breeding. Cytogenet Genome Res 109:378–384. doi: 10.1159/000082423 PubMedCrossRefGoogle Scholar
  25. Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106. doi: 10.1139/g02-071 PubMedCrossRefGoogle Scholar
  26. McClintock B (1978) Mechanisms that rapidly reorganize the genome. Stadler Symp 10:25–48Google Scholar
  27. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448. doi: 10.1007/BF00226743 Google Scholar
  28. Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum/Aegilops biuncialis amphiploids by multicolour genomic in situ hybridisation. Genome 52:156–165. doi: 10.1139/G08-114 PubMedCrossRefGoogle Scholar
  29. Pedersen C, Linde-Laursen I (1994) Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res 2:65–71. doi: 10.1007/BF01539456 PubMedCrossRefGoogle Scholar
  30. Pedersen C, Rasmussen SK, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridisation with the GAA-satellite sequence. Genome 39:93–104. doi: 10.1139/g96-013 PubMedCrossRefGoogle Scholar
  31. Pickering R, Klatte S, Butler RC (2006) Identification of all chromosome arms and their involvement in meiotic homoeologous associations at metaphase I in 2 Hordeum vulgare L x Hordeum bulbosum L hybrids. Genome 49:73–78. doi: 10.1139/g05-071 PubMedCrossRefGoogle Scholar
  32. Prieto P, Martín A, Cabrera A (2004) Chromosomal distribution of telomeric and telomeric-associated sequences in Hordeum chilense by in situ hybridization. Hereditas 141:122–127. doi: 10.1111/j.1601-5223.2004.01825.x PubMedCrossRefGoogle Scholar
  33. Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW (2004) The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics 167:371–1379. doi: 10.1534/genetics.103.023747 CrossRefGoogle Scholar
  34. Sánchez-Moran E, Benavente E, Orellana J (1999) Simultaneous identification of A, B, D and R genomes by genomic in situ hybridisation in wheat-rye derivatives. Heredity 83:249–252. doi: 10.1038/sj.hdy.6885570 PubMedCrossRefGoogle Scholar
  35. Schubert I, Shi F, Fuchs J, Endo TR (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J 14:489–495. doi: 10.1046/j.1365-313X.1998.00125.x CrossRefGoogle Scholar
  36. Taketa S, Harrison GE, Heslop-Harrison J (1999) Comparative physical mapping of the 5S and 18S–25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9. doi: 10.1007/s001220051033 CrossRefGoogle Scholar
  37. Taketa S, Ando H, Takeda K, von Bothmer R (2001) Physical locations of 5S and 18S–25S rDNA in Asian and American diploid Hordeum species with the I genome. Heredity 86:522–530. doi: 10.1046/j.1365-2540.2001.00768.x PubMedCrossRefGoogle Scholar
  38. Taketa S, Ando H, Takeda K, Ichii M, von Bothmer R (2005) Ancestry of American polyploid Hordeum species with the I genome inferred from 5S and 18S-25S rDNA. Ann Bot 96:23–33. doi: 10.1093/aob/mci147 PubMedCrossRefGoogle Scholar
  39. The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716. doi: 10.1038/nature11543 Google Scholar
  40. Todorovska E, Trifonova A, Atanassov A (2003) Genetic diversity among elite Bulgarian barley varieties evaluated by RFLP and RAPD markers. Euphytica 129:325–336. doi: 10.1023/A:1022205000732 CrossRefGoogle Scholar
  41. Vahidy AA, Jahan B (1995) Intervarietal polymorphism of constitutive heterochromatin in Hordeum vulgare L. Pakistan J Biol 27:417–423Google Scholar
  42. Vershinin AV, Alkhimova EG, Heslop-Harrison JS (1996) Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species. Chromosome Res 4:517–525. doi: 10.1007/BF02261779 PubMedCrossRefGoogle Scholar
  43. Vosa CG (1976) Chromosome banding patterns in cultivated and wild barleys (Hordeurn spp). Heredity 37:395–403. doi: 10.1038/hdy.1976.104 CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2013

Authors and Affiliations

  1. 1.Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations