Journal of Applied Genetics

, Volume 54, Issue 1, pp 21–26

The influence of novel transcriptional regulatory element in intron 14 on the expression of Janus kinase 2 gene in myeloproliferative neoplasms

  • Vesna Spasovski
  • Natasa Tosic
  • Gordana Nikcevic
  • Maja Stojiljkovic
  • Branka Zukic
  • Milena Radmilovic
  • Teodora Karan-Djurasevic
  • Sanja Srzentic
  • Milica Colovic
  • Sonja Pavlovic
Human Genetics • Original Paper

Abstract

The expression of Janus kinase 2 (JAK2) gene is altered in myeloproliferative neoplasms (MPN) and the regulation of transcription could be a mechanism that modulates JAK2 gene expression. We analyzed the transcriptional potential of single-nucleotide polymorphism (SNP) rs12343867 T > C in JAK2 intron 14, tagging 46/1 haplotype, and its influence on JAK2 gene expression. Functional analysis of JAK2 intron 14 was performed using the pBLCAT5 reporter system in K562 cells. Identification of the proteins binding to the intron 14 regulatory element was accomplished by electrophoretic mobility shift assay (EMSA) and supershift assays. Quantification of the expression of JAK2 gene in a cohort of 51 MPN patients and 12 healthy controls was performed by real-time quantitative polymerase chain reaction (RQ-PCR). Functional analysis revealed that the intronic DNA element harboring SNP rs12343867 T > C acts as a transcriptional repressor in vitro. The repressor activity was significantly attenuated by the presence of nucleotide C. Supershift analysis showed the enrolment of transcriptional factor Meis1 in this process. RQ-PCR experiments showed increased JAK2 expression in patients with the JAK2V617F mutation, with a significant difference between essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF) patients. SNP rs12343867 showed no statistically significant influence on the expression of JAK2 gene in MNP patients.

Keywords

Myeloproliferative neoplasms JAK2 intron 14 46/1 haplotype JAK2 gene expression Transcriptional regulation 

References

  1. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR; Cancer Genome Project (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061PubMedGoogle Scholar
  2. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D, Wilkins BS, Reilly JT, Hasselbalch HC, Bowman R, Wheatley K, Buck G, Harrison CN, Green AR (2008) MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 112(1):141–149PubMedCrossRefGoogle Scholar
  3. Boshart M, Klüppel M, Schmidt A, Schütz G, Luckow B (1992) Reporter constructs with low background activity utilizing the cat gene. Gene 110(1):129–130PubMedCrossRefGoogle Scholar
  4. Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, Marsden JT, Duffy A, Boyd EM, Bench AJ, Scott MA, Vassiliou GS, Milligan DW, Smith SR, Erber WN, Bareford D, Wilkins BS, Reilly JT, Harrison CN, Green AR; United Kingdom Myeloproliferative Disorders Study Group; Medical Research Council Adult Leukaemia Working Party; Australasian Leukaemia and Lymphoma Group (2005) Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 366(9501):1945–1953PubMedCrossRefGoogle Scholar
  5. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C, Kreil S, Jones AV, Score J, Metzgeroth G, Oscier D, Hall A, Brandts C, Serve H, Reiter A, Chase AJ, Cross NC (2009) Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113(24):6182–6192PubMedCrossRefGoogle Scholar
  6. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148PubMedCrossRefGoogle Scholar
  7. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, Cario H, Pahl HL, Collins A, Reiter A, Grand F, Cross NC (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41(4):446–449PubMedCrossRefGoogle Scholar
  8. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, Bass A, Marubayashi S, Heguy A, Garcia-Manero G, Kantarjian H, Offit K, Stone RM, Gilliland DG, Klein RJ, Levine RL (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 41(4):455–459PubMedCrossRefGoogle Scholar
  9. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790PubMedCrossRefGoogle Scholar
  10. Lacy J, Rudnick H (1992) Transcriptional regulation of the human IgE receptor (Fc epsilon RII/CD23) by EBV. Identification of EBV-responsive regulatory elements in intron 1. J Immunol 148(5):1554–1560PubMedGoogle Scholar
  11. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Fröhling S, Döhner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397PubMedCrossRefGoogle Scholar
  12. Lippert E, Boissinot M, Kralovics R, Girodon F, Dobo I, Praloran V, Boiret-Dupré N, Skoda RC, Hermouet S (2006) The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 108(6):1865–1867. doi:10.1182/blood-2006-01-013540 PubMedCrossRefGoogle Scholar
  13. Ma W, Kantarjian H, Zhang X, Yeh CH, Zhang ZJ, Verstovsek S, O’Brien S, Giles F, Albitar M (2010) Plasma levels of JAK2 mRNA in patients with chronic myeloproliferative diseases with and without V617F mutation: implications for prognosis and disease biology. Int J Lab Hematol 32(1 Pt 2):95–102PubMedCrossRefGoogle Scholar
  14. Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I, Gisslinger H, Kralovics R (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41(4):450–454PubMedCrossRefGoogle Scholar
  15. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, Steensma DP, Elliott MA, Wolanskyj AP, Hogan WJ, McClure RF, Litzow MR, Gilliland DG, Tefferi A (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108(10):3472–3476PubMedCrossRefGoogle Scholar
  16. Plo I, Vainchenker W (2009) Molecular and genetic bases of myeloproliferative disorders: questions and perspectives. Clin Lymphoma Myeloma 9(Suppl 3):S329–S339PubMedCrossRefGoogle Scholar
  17. Schram AM, Xing X, Kilpivaara O, Mukherjee S, Viny AD, Guryanova O, Klein RJ, Levine RL (2011) Genetic and functional investigation of germline JAK2 alleles that predispose to myeloproliferative neoplasms. In: Proceedings of the 53rd ASH Annual Meeting and Exposition, San Diego, California, December 2011, abstract 124Google Scholar
  18. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, Warren AJ, Gilliland DG, Lodish HF, Green AR (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356(5):459–468PubMedCrossRefGoogle Scholar
  19. Stojiljkovic M, Zukic B, Tosic N, Karan-Djurasevic T, Spasovski V, Nikcevic G, Pavlovic S (2010) Novel transcriptional regulatory element in the phenylalanine hydroxylase gene intron 8. Mol Genet Metab 101(1):81–83PubMedCrossRefGoogle Scholar
  20. Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Gangat N, Finke CM, Schwager S, Mullally A, Li CY, Hanson CA, Mesa R, Bernard O, Delhommeau F, Vainchenker W, Gilliland DG, Levine RL (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23(5):905–911PubMedCrossRefGoogle Scholar
  21. Yang Y, Hwang CK, D’Souza UM, Lee SH, Junn E, Mouradian MM (2000) Three-amino acid extension loop homeodomain proteins Meis2 and TGIF differentially regulate transcription. J Biol Chem 275(27):20734–20741PubMedCrossRefGoogle Scholar
  22. Zukic B, Radmilovic M, Stojiljkovic M, Tosic N, Pourfarzad F, Dokmanovic L, Janic D, Colovic N, Philipsen S, Patrinos GP, Pavlovic S (2010) Functional analysis of the role of the TPMT gene promoter VNTR polymorphism in TPMT gene transcription. Pharmacogenomics 11(4):547–557PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2012

Authors and Affiliations

  • Vesna Spasovski
    • 1
  • Natasa Tosic
    • 1
  • Gordana Nikcevic
    • 1
  • Maja Stojiljkovic
    • 1
  • Branka Zukic
    • 1
  • Milena Radmilovic
    • 1
  • Teodora Karan-Djurasevic
    • 1
  • Sanja Srzentic
    • 1
  • Milica Colovic
    • 2
  • Sonja Pavlovic
    • 1
  1. 1.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.School of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations