Journal of Applied Genetics

, Volume 53, Issue 1, pp 61–82 | Cite as

Genetic determinants of aggression and impulsivity in humans

  • Konstantin A. Pavlov
  • Dimitry A. Chistiakov
  • Vladimir P. Chekhonin
Human Genetics • Review


Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.


Aggression Association Dopamine Impulsivity Polymorphism Serotonin 


  1. Albaugh MD, Harder VS, Althoff RR, Rettew DC, Ehli EA, Lengyel-Nelson T, Davies GE, Ayer L, Sulman J, Stanger C, Hudziak JJ (2010) COMT Val158Met genotype as a risk factor for problem behaviors in youth. J Am Acad Child Adolesc Psychiatry 49:841–849PubMedCrossRefGoogle Scholar
  2. Alliey-Rodriguez N, Zhang D, Badner JA, Lahey BB, Zhang X, Dinwiddie S, Romanos B, Plenys N, Liu C, Gershon ES (2011) Genome-wide association study of personality traits in bipolar patients. Psychiatr Genet 21:190–194PubMedCrossRefGoogle Scholar
  3. Aluja A, García LF, Blanch A, Fibla J. Association of androgen receptor gene, CAG and GGN repeat length polymorphism and impulsive-disinhibited personality traits in inmates: the role of short-long haplotype. Psychiatr Genet (in press) doi:10.1097/YPG.0b013e328345465e
  4. Anney RJ, Lasky-Su J, O'Dúshláine C, Kenny E, Neale BM, Mulligan A, Franke B, Zhou K, Chen W, Christiansen H, Arias-Vásquez A, Banaschewski T, Buitelaar J, Ebstein R, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Sonuga-Barke E, Steinhausen H, Asherson P, Faraone SV, Gill M (2008) Conduct disorder and ADHD: evaluation of conduct problems as a categorical and quantitative trait in the international multicentre ADHD genetics study. Am J Med Genet B Neuropsychiatr Genet 147B:1369–1378PubMedCrossRefGoogle Scholar
  5. Archer J (2006) Testosterone and human aggression: an evaluation of the challenge hypothesis. Neurosci Biobehav Rev 30(3):319–345PubMedCrossRefGoogle Scholar
  6. Åslund C, Nordquist N, Comasco E, Leppert J, Oreland L, Nilsson KW (2010) Maltreatment, MAOA, and delinquency: sex differences in gene–environment interaction in a large population-based cohort of adolescents. Behav Genet 41:262–272PubMedCrossRefGoogle Scholar
  7. Assal F, Alarcón M, Solomon EC, Masterman D, Geschwind DH, Cummings JL (2004) Association of the serotonin transporter and receptor gene polymorphisms in neuropsychiatric symptoms in Alzheimer disease. Arch Neurol 61:1249–1253PubMedCrossRefGoogle Scholar
  8. Baca-Garcia E, Vaquero C, Diaz-Sastre C, García-Resa E, Saiz-Ruiz J, Fernández-Piqueras J, de Leon J (2004) Lack of association between the serotonin transporter promoter gene polymorphism and impulsivity or aggressive behavior among suicide attempters and healthy volunteers. Psichiatry Res 126:99–106CrossRefGoogle Scholar
  9. Bachner-Melman R, Dina C, Zohar AH, Constantini N, Lerer E, Hoch S, Sella S, Nemanov L, Gritsenko I, Lichtenberg P, Granot R, Ebstein RP (2005) AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet 1:e42PubMedCrossRefGoogle Scholar
  10. Baehne CG, Ehlis AC, Plichta MM, Conzelmann A, Pauli P, Jacob C, Gutknecht L, Lesch KP, Fallgatter AJ (2009) Tph2 gene variants modulate response control processes in adult ADHD patients and healthy individuals. Mol Psychiatry 14:1032–1039PubMedCrossRefGoogle Scholar
  11. Baker LA, Raine A, Liu J, Jacobson KC (2008) Differential genetic and environmental influences on reactive and proactive aggression in children. J Abnorm Child Psychol 36:1265–1278PubMedCrossRefGoogle Scholar
  12. Bassarath L (2001) Neuroimaging studies of antisocial behaviour. Can J Psychiatry 46:728–732PubMedGoogle Scholar
  13. Beaver KM, Wright JP, DeLisi M, Walsh A, Vaughn MG, Boisvert D, Vaske J (2007) A gene x gene interaction between DRD2 and DRD4 is associated with conduct disorder and antisocial behavior in males. Behav Brain Functions 3:30CrossRefGoogle Scholar
  14. Beaver KM, Gibson CL, Jennings WG, Ward JT (2011) A gene x environment interaction between DRD2 and religiosity in the prediction of adolescent delinquent involvement in a sample of males. Biodemography Soc Biol 55:71–81CrossRefGoogle Scholar
  15. Beitchman JH, Baldassarra L, Mik H, De Luca V, King N, Bender D, Ehtesham S, Kennedy JL (2006) Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. Am J Psychiatry 163:1103–1105PubMedCrossRefGoogle Scholar
  16. Bell R, Hobson H (1994) 5-HT1A receptor influences on rodent social and agonistic behavior: a review and empirical study. Neurosci Biobehav Rev 18:325–338PubMedCrossRefGoogle Scholar
  17. Bellivier F, Chaste P, Malafosse A (2004) Association between the TPH gene A218C polymorphism and suicidal behavior: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 124B:87–91PubMedCrossRefGoogle Scholar
  18. Bengel D, Jöhren O, Andrews AM, Heils A, Mössner R, Sanvitto GL, Saavedra JM, Lesch KP, Murphy DL (1997) Cellular localization and expression of the serotonin transporter in mouse brain. Brain Res 778:338–345PubMedCrossRefGoogle Scholar
  19. Benton D (1988) Hypoglycemia and aggression: a review. Int J Neurosci 41:163–168PubMedCrossRefGoogle Scholar
  20. Bernhardt PC (1997) Influences of serotonin and testosterone in aggression and dominance: convergence with social psychology. Curr Direc Psychol Sci 6:44–48CrossRefGoogle Scholar
  21. Bertolino A, Rubino V, Sambataro F, Blasi G, Latorre V, Fazio L, Caforio G, Petruzzella V, Kolachana B, Hariri A, Meyer-Lindenberg A, Nardini M, Weinberger DR, Scarabino T (2006) Prefrontal-hippocampal coupling during memory processing is modulated by COMT val158met genotype. Biol Psychiatry 60:1250–1258PubMedCrossRefGoogle Scholar
  22. Bertolino A, Fazio L, Caforio G, Blasi G, Rampino A, Romano R, Di Giorgio A, Taurisano P, Papp A, Pinsonneault J, Wang D, Nardini M, Popolizio T, Sadee W (2009) Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain 132:417–425PubMedCrossRefGoogle Scholar
  23. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T, Zhou Z, Wedenoja J, Maroteaux L, Diaz S, Belmer A, Hodgkinson CA, Dell'osso L, Suvisaari J, Coccaro E, Rose RJ, Peltonen L, Virkkunen M, Goldman D (2010) A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468:1061–1066PubMedCrossRefGoogle Scholar
  24. Bezdjian S, Tuvblad C, Raine A, Baker LA (2011) The genetic and environmental covariation among psychopathic personality traits, and reactive and proactive aggression in childhood. Child Dev 82:1267–1281PubMedCrossRefGoogle Scholar
  25. Birger M, Swartz M, Cohen D, Alesh Y, Grishpan C, Kotelr M (2003) Aggression: the testosterone-serotonin link. Isr Med Assoc J 5:653–658PubMedGoogle Scholar
  26. Bitar MS, Ota M, Linnoila M, Shapiro BH (1991) Modification of gonadectomy-induced increases in brain monoamine metabolism by steroid hormones in male and female rats. Psychoneuroendocrinology 16547–557Google Scholar
  27. Blair RJR, Peschardt KS, Budhani S, Mitchell DGV, Pine DS (2006) The development of psychopathy. J Child Psychol Psychiatry 47:262–275Google Scholar
  28. Bonson KR, Johnson RG, Fiorella D, Rabin RA, Winter JC (1994) Serotonergic control of androgen-induced dominance. Pharmacol Biochem Behav 49:313–322PubMedCrossRefGoogle Scholar
  29. Book AS, Starzyk KB, Quinsey VL (2001) The relationship between testosterone and aggression: a meta-analysis. Aggress Violent Behav 6:579–599CrossRefGoogle Scholar
  30. Booth A, Osgood D (1993) The influence of testosterone on deviance in adulthood. Criminology 31:93–117CrossRefGoogle Scholar
  31. Booth A, Shelley G, Mazur A, Tharp G, Kittok R (1989) Testosterone, and winning and losing in human, competition. Horm Behav 23:556–571PubMedCrossRefGoogle Scholar
  32. Brendgen M, Vitaro F, Boivin M, Dionne G, Pérusse D (2006) Examining genetic and environmental effects on reactive versus proactive aggression. Dev Psychol 42:1299–1312PubMedCrossRefGoogle Scholar
  33. Brennan PA, Hammen C, Sylvers P, Bor W, Najman J, Lind P, Montgomery G, Smith AK (2011) Interactions between the COMT Val108/158Met polymorphism and maternal prenatal smoking predict aggressive behavior outcomes. Biol Psychol 87:99–105PubMedCrossRefGoogle Scholar
  34. Brockschmidt FF, Nothen MM, Hillmer AM (2007) The two most common alleles of the coding GGN repeat in the androgen receptor gene cause differences in protein function. J Mol Endocrinol 39:1–8PubMedCrossRefGoogle Scholar
  35. Brody GH, Beach SRH, Philibert RA, Chen Y-F, Murry McBride V (2009) Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: gene × environment hypotheses tested via a randomized prevention design. Dev Psychol 8:645–661Google Scholar
  36. Brown GL, McGarvey EL, Shirtcliff EA, Keller A, Granger DA, Flavin K (2008) Salivary cortisol, dehydroepiandrosterone, and testosterone interrelationships in healthy young males: a pilot study with implications for studies of aggressive behavior. Psychiatry Res 30(159):67–76CrossRefGoogle Scholar
  37. Brunner HG, Nelen M, BreakeWeld XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580PubMedCrossRefGoogle Scholar
  38. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Shelby ES, Smith CE, Kessler RM, Zald DH (2010) Dopaminergic network differences in human impulsivity. Science 329:532PubMedCrossRefGoogle Scholar
  39. Cadoret RJ, Langbehn D, Caspers K, Troughton EP, Yucuis R, Sandhu HK, Philibert R (2003) Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Compr Psychiatry 44:88–101PubMedCrossRefGoogle Scholar
  40. Cairns RB (1996) Aggression from a developmental perspective: genes, environments and interactions. Ciba Found Symp 194:45–56PubMedGoogle Scholar
  41. Callewaert L, Christiaens V, Haelens A, Verrijdt G, Verhoeven G, Claessens F (2003) Implications of a polyglutamine tract in the function of the human androgen receptor. Biochem Biophys Res Commun 306:46–52PubMedCrossRefGoogle Scholar
  42. Caramaschi D, de Boer SF, Koolhaas JM (2007) Differential role of the 5-HT1A receptor in aggressive and non- aggressive mice: an across-strain comparison. Physiol Behav 90:590–601PubMedCrossRefGoogle Scholar
  43. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih JC (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766PubMedCrossRefGoogle Scholar
  44. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854PubMedCrossRefGoogle Scholar
  45. Chamberlain NL, Driver ED, Miesfeld RL (1994) The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 22:3181–3186PubMedCrossRefGoogle Scholar
  46. Chen TJ, Blum K, Mathews D, Fisher L, Schnautz N, Braverman ER, Schoolfield J, Downs BW, Comings DE (2005) Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of "super normal controls" in psychiatricgenetic research of complex behavioral disorders. Med Hypotheses 65:703–707PubMedCrossRefGoogle Scholar
  47. Chichinadze KN, Domianidze TR (2010) Matitaishvili TTs, Chichinadze NK, Lazarashvili AG. Bull Exp Biol Med 149:7–9PubMedCrossRefGoogle Scholar
  48. Coccaro EF, Kavoussi RJ, Trestman RL, Gabriel SM, Cooper TB, Siever LJ (1997) Serotonin function in human subjects: intercorrelations among central 5-HT indices and aggressiveness. Psychiatry Res 73:1–14PubMedCrossRefGoogle Scholar
  49. Coccaro EF, McCloskey MS, Fitzgerald DA, Phan KL (2007) Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol Psychiatry 62:168–178PubMedCrossRefGoogle Scholar
  50. Cologer-Clifford A, Simon NG, Lu SF, Smoluk SA (1997) Serotonin agonist-induced decreases in intermale aggression are dependent on brain region and receptor subtype. Pharmacol Biochem Behav 58:425–430PubMedCrossRefGoogle Scholar
  51. Colzato LS, van den Wildenberg WP, Van der Does AJ, Hommel B (2010) Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience 170:782–788PubMedCrossRefGoogle Scholar
  52. Comings DE, Muhleman D, Johnson P, MacMurray JP (1999) Potential role of the estrogen receptor gene (ESR1) in anxiety. Mol Psychiatry 4:374–377PubMedCrossRefGoogle Scholar
  53. Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, Blake H, Chiu F, Wang E, Farwell K, Darakjy S, Baker R, Dietz G, Saucier G, MacMurray JP (2000a) Multivariate analysis of associations of 42 genes in ADHD, ODD and conduct disorder. Clin Genet 58:31–40PubMedCrossRefGoogle Scholar
  54. Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, Blake H, Mann MB, Dietz G, Saucier G, MacMurray JP (2000b) A multivariate analysis of 59 candidate genes in personality traits: the Temperament and Character Inventory. Clin Genet 58:375–385PubMedCrossRefGoogle Scholar
  55. Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, Chen C, Koh P, Farwell K, Blake H, Dietz G, MacMurray JP, Lesieur HR, Rugle LJ, Rosenthal RJ (2001) The additive effect of neurotransmitter genes in pathological gambling. Clin Genet 60:107–116PubMedCrossRefGoogle Scholar
  56. Conner TS, Jensen KP, Tennen H, Furneaux HM, Kranzler HR, Covault J (2010) Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men. Am J Med Genet B Neuropsychiatr Genet 153B(1):67–78PubMedGoogle Scholar
  57. Correa H, De Marco L, Boson W, Nicolato R, Teixeira AL, Campo VR, Romano-Silva MA (2007) Association study of T102C 5-HT(2A) polymorphism in schizophrenic patients: diagnosis, psychopathology, and suicidal behavior. Dialogues Clin Neurosci 9:97–101PubMedGoogle Scholar
  58. Courtet P, Baud P, Abbar M, Boulenger JP, Castelnau D, Mouthon D, Malafosse A, Buresi C (2001) Association between violent suicidal behavior and the low activity allele of the serotonin transporter gene. Mol Psychiatry 6:338–341PubMedCrossRefGoogle Scholar
  59. Craig IW (2007) The importance of stress and genetic variation in human aggression. Bioessays 29:227–236PubMedCrossRefGoogle Scholar
  60. Craig SP, Boularand S, Darmon MC, Mallet J, Craig IW (1991) Localization of human tryptophan hydroxylase (TPH) to chromosome 11p15.3-p14 by in situ hybridization. Cytogenet Cell Genet 56:157–159PubMedCrossRefGoogle Scholar
  61. Dabbs JM Jr, Morris R (1990) Testosterone, social class, and antisocial behavior in a sample of 4,462 men. Psychol Sci 1:209–211CrossRefGoogle Scholar
  62. Dabbs JM Jr, Jurkovic GJ, Frady RL (1991) Salivary testosterone and cortisol among late adolescent male offenders. J Abnorm Child Psychol 19:469–478PubMedCrossRefGoogle Scholar
  63. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, Peña Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270PubMedCrossRefGoogle Scholar
  64. Dannlowski U, Ohrmann P, Konrad C, Domschke K, Bauer J, Kugel H, Hohoff C, Schöning S, Kersting A, Baune BT, Mortensen LS, Arolt V, Zwitserlood P, Deckert J, Heindel W, Suslow T (2009) Reduced amygdala-prefrontal coupling in major depression: association with MAOA genotype and illness severity. Int J Neuropsychopharmacol 12:11–22PubMedCrossRefGoogle Scholar
  65. Davidge KM, Atkinson L, Douglas L, Lee V, Shapiro S, Kennedy JL, Beitchman JH (2004) Association of the serotonin transporter and 5HT1D beta receptor genes with extreme, persistent and pervasive aggressiv behaviour in children. Psychiatr Genet 14:143–146PubMedCrossRefGoogle Scholar
  66. Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation - a possible prelude to violence. Science 289:591–594PubMedCrossRefGoogle Scholar
  67. de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526:51–64PubMedCrossRefGoogle Scholar
  68. De Jonge FH, van de Poll NE (1984) Relationships between sexual and aggressive behavior in male and female rats: effects of gonadal hormones. Prog Brain Res 61:283–302PubMedCrossRefGoogle Scholar
  69. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di BD, Nothen MM, MaVei P, Franke P, Fritze J, Maier W, Propping P, Beckmann H, Bellodi L, Lesch KP (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 8:621–624PubMedCrossRefGoogle Scholar
  70. Denney RM, Koch H, Craig IW (1999) Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum Genet 105:542–551PubMedCrossRefGoogle Scholar
  71. Dolan M, Anderson IM, Deakin JF (2001) Relationship between 5-HT function and impulsivity and aggression in male offenders with personality disorders. Br J Psychiatry 178:352–359PubMedCrossRefGoogle Scholar
  72. Dreher JC, Kohn P, Kolachana B, Weinberger DR, Berman KF (2009) Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci USA 106:617–622PubMedCrossRefGoogle Scholar
  73. Duan J, Sanders AR, Molen JE, Martinolich L, Mowry BJ, Levisnon DF, Crowe RR, Silverman JM, Gejman PV (2003) Polymorphisms in the 5’ untranslated region of the human serotonin receptor 1B (HTR1B) gene affect gene expression. Mol Psychiatry 8:901–910PubMedCrossRefGoogle Scholar
  74. Dunning AM, Dowsett M, Healey CS, Tee L, Luben RN, Folkerd E, Novik KL, Kelemen L, Ogata S, Pharoah PD, Easton DF, Day NE, Ponder BA (2004) Polymorphisms associated with circulating sex hormone levels in postmenopausal women. J Natl Cancer Inst 96:936–945PubMedCrossRefGoogle Scholar
  75. Ebstein RP, Benjamin J, Belmaker RH (2000) Personality and polymorphisms of genes involved in aminergic neurotransmission. Eur J Pharmacol 410:205–214PubMedCrossRefGoogle Scholar
  76. Elias M (1981) Serum cortisol, testosterone, and testosterone-binding globulin responses to competitive fighting in human males. Aggress Behav 7:215–224CrossRefGoogle Scholar
  77. Ertugrul A, Kennedy JL, Masellis M, Basile VS, Jayathilake K, Meltzer HY (2004) No association of the T102C polymorphism of the serotonin 2A receptor gene (HTR2A) with suicidality in schizophrenia. Schizophr Res 69:301–305PubMedCrossRefGoogle Scholar
  78. Fan X, Xu M, Hess EJ (2010) D2 dopamine receptor subtype-mediated hyperactivity and amphetamine responses in a model of ADHD. Neurobiol Dis 37:228–236PubMedCrossRefGoogle Scholar
  79. Ferguson CJ (2010) Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective. J Soc Psychol 150:160–180PubMedCrossRefGoogle Scholar
  80. Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/ serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17:4331–4340PubMedGoogle Scholar
  81. Flores F, Naftolin F, Ryan KJ (1973) Aromatization of androstenedione and testosterone by rhesus monkey hypothalamus and limbic system. Neuroendocrinology 11:177–182PubMedCrossRefGoogle Scholar
  82. Forbes EE, Brown SM, Kimak M, Ferrell RE, Manuck SB, Hariri AR (2009) Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry 14:60–70PubMedCrossRefGoogle Scholar
  83. Franke B, Hoogman M, Arias Vasquez A, Heister JG, Savelkoul PJ, Naber M, Scheffer H, Kiemeney LA, Kan CC, Kooij JJ, Buitelaar JK (2008) Association of the dopamine transporter (SLC6A3/DAT1) gene 9–6 haplotype with adult ADHD. Am J Med Genet B Neuropsychiatr Genet 147B:1576–1579PubMedCrossRefGoogle Scholar
  84. Franke B, Vasquez AA, Johansson S, Hoogman M, Romanos J, Boreatti-Hümmer A, Heine M, Jacob CP, Lesch KP, Casas M, Ribasés M, Bosch R, Sánchez-Mora C, Gómez-Barros N, Fernàndez-Castillo N, Bayés M, Halmøy A, Halleland H, Landaas ET, Fasmer OB, Knappskog PM, Heister AJ, Kiemeney LA, Kooij JJ, Boonstra AM, Kan CC, Asherson P, Faraone SV, Buitelaar JK, Haavik J, Cormand B, Ramos-Quiroga JA, Reif A (2010) Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology 35:656–664PubMedCrossRefGoogle Scholar
  85. Furmark T, Appel L, Henningsson S, Ahs F, Faria V, Linnman C, Pissiota A, Frans O, Bani M, Bettica P, Pich EM, Jacobsson E, Wahlstedt K, Oreland L, Långström B, Eriksson E, Fredrikson M (2008) A link between serotonin-related gene polymorphisms, amygdala activity, and placebo-induced relief from social anxiety. J Neurosci 28:13066–13074PubMedCrossRefGoogle Scholar
  86. George DT, Umau JC, Philips MJ, Emmela D, Ragan PW, Shoaf SE, Rawlings RR (2001) Serotonin, testosterone and alcohol in the etiology of domestic violence. Psychiatr Res 104:27–37CrossRefGoogle Scholar
  87. George DT, Rawlings RR, Williams WA, Phillips MJ, Fong G, Kerich M, Momenan R, Umhau JC, Hommer D (2004) A select group of perpetrators of domestic violence: evidence of decreased metabolism in the right hypothalamus and reduced relationships between cortical/subcortical brain structures in position emission tomography. Psychiatry Res 130:11–25PubMedCrossRefGoogle Scholar
  88. Gerra G, Garofano L, Castaldini L, Rovetto F, Zaimovic A, Moi G, Bussandri M, Branchi B, Brambilla F, Friso G, Donnini C (2005) Serotonin transporter promoter polymorphism genotype is associated with temperament, personality traits and illegal drugs use among adolescents. J Neural Transm 112:1397–1410PubMedCrossRefGoogle Scholar
  89. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90PubMedCrossRefGoogle Scholar
  90. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M (1998) Catechol-O- methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95:9991–9916PubMedCrossRefGoogle Scholar
  91. Gonda X, Fountoulakis KN, Juhasz G, Rihmer Z, Lazary J, Laszik A, Akiskal HS, Bagdy G (2009) Association of the s allele of the 5-HTTLPR with neuroticism-related traits and temperaments in a psychiatrically healthy population. Eur Arch Psychiatry Clin Neurosci 259:106–113PubMedCrossRefGoogle Scholar
  92. Greenberg BD, Tolliver TJ, Huang SJ, Li Q, Bengel D, Murphy DL (1999) Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am J Med Genet 88:83–87PubMedCrossRefGoogle Scholar
  93. Guo G, Roettger ME, Shih JC (2007) Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults. Hum Genet 121:125–136PubMedCrossRefGoogle Scholar
  94. Guo G, Ou X-M, Roettger M, Shih JC (2008) The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations and MAOA promoter activity. Eur J Hum Genet 16:626–634PubMedCrossRefGoogle Scholar
  95. Gutknecht L, Kriegebaum C, Waider J, Schmitt A, Lesch K-P (2009) Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice. Eur Neuropsychopharmacol 19:266–282PubMedCrossRefGoogle Scholar
  96. Ha TM, Cho DM, Park SW, Joo MJ, Lee BJ, Kong BG, Kim JM, Yoon JS, Kim YH (2005) Evaluating associations between 5-HTTLPR polymorphism and Alzheimer's disease for Korean patients. Dement Geriatr Cogn Disord 20:31–34PubMedCrossRefGoogle Scholar
  97. Haberstick BC, Smolen A, Hewitt JK (2006) Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol Psychiatry 59:836–843PubMedCrossRefGoogle Scholar
  98. Han DH, Park DB, Na C, Kee BS, Lee YS (2004) Association of aggressive behavior in Korean male schizophrenic patients with polymorphisms in the serotonin transporter promoter and catecholamine-O-methyltransferase genes. Psychiatry Res 129:29–37PubMedCrossRefGoogle Scholar
  99. Hanna GL, Himle JA, Curtis GC, Koram DQ, Veenstra-VanderWeele J, Leventhal BL, Cook EH Jr (1998) Serotonin transporter and seasonal variation in blood serotonin in families with obsessive-compulsive disorder. Neuropsychopharmacology 18:102–111PubMedCrossRefGoogle Scholar
  100. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213PubMedCrossRefGoogle Scholar
  101. Hasegawa Y, Higuchi S, Matsushita S, Miyaoka H (2002) Association of a polymorphism of the serotonin 1B receptor gene and alcohol dependence with inactive aldehyde dehydrogenase-2. J Neural Transm 109:513–521PubMedCrossRefGoogle Scholar
  102. Heinrichs M, von Dawans B, Domes G (2009) Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol 30:548–557PubMedCrossRefGoogle Scholar
  103. Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D, Klein S, Grüsser SM, Flor H, Schumann G, Mann K, Büchel C (2005) Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 8:20–21PubMedCrossRefGoogle Scholar
  104. Hermans EJ, Ramsey NF, van Honk J (2008) Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiatry 63:263–270PubMedCrossRefGoogle Scholar
  105. Herrington DM, Howard TD, Brosnihan KB, McDonnell DP, Li X, Hawkins GA, Reboussin DM, Xu J, Zheng SL, Meyers DA, Bleecker ER (2002) Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation 105:1879–1882PubMedCrossRefGoogle Scholar
  106. Hess C, Reif A, Strobel A, Boreatti-Hümmer A, Heine M, Lesch KP, Jacob CP (2009) A functional dopamine-beta- hydroxylase gene promoter polymorphism is associated with impulsive personality styles, but not with affective disorders. J Neural Transm 116:121–130PubMedCrossRefGoogle Scholar
  107. Higley JD, Mehlman PT (1996) CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biol Psychiatry 40:1067–1082PubMedCrossRefGoogle Scholar
  108. Higley JD, Mehlman PT (1997) Comment on the article: CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biol Psychiatry 42:305–307CrossRefGoogle Scholar
  109. Hohmann S, Becker K, Fellinger J, Banaschewski T, Schmidt MH, Esser G, Laucht M (2009) Evidence for epistasis between the 5-HTTLPR and the dopamine D4 receptor polymorphisms in externalizing behavior among 15-year-olds. J Neural Transm 116:1621–1629PubMedCrossRefGoogle Scholar
  110. Hong CJ, Pan GM, Tsai SJ (2004) Association study of onset age, attempted suicide, aggressive behavior, and schizophrenia with a serotonin 1B receptor (A-161 T) genetic polymorphism. Neuropsychobiology 49:1–4PubMedCrossRefGoogle Scholar
  111. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203PubMedGoogle Scholar
  112. Huang YY, Battistuzzi C, Oquendo MA, Harkavy-Friedman J, Greenhill L, Zalsman G, Brodsky B, Arango V, Brent DA, Mann JJ (2004) Human 5-HT1A receptor C(−1019)G polymorphism and psychopathology. Int J Neuropsychopharmacol 7:441–451PubMedCrossRefGoogle Scholar
  113. Inoue H, Yamasue H, Tochigi M, Takei K, Suga M, Abe O, Yamada H, Rogers MA, Aoki S, Sasaki T, Kasai K (2010) Effect of tryptophan hydroxylase-2 gene variants on amygdalar and hippocampal volumes. Brain Res 1331:51–57PubMedCrossRefGoogle Scholar
  114. Israel S, Lerer E, Shalev I, Uzefovsky F, Reibold M, Bachner-Melman R, Granot R, Bornstein G, Knafo A, Yirmiya N, Ebstein RP (2008) Molecular genetic studies of the arginine vasopressin 1a receptor (AVPR1a) and the oxytocin receptor (OXTR) in human behaviour: from autism to altruism with some notes in between. Prog Brain Res 170:435–449PubMedCrossRefGoogle Scholar
  115. Jensen KP, Covault J, Conner TS, Tennen H, Kranzler HR, Furneaux HM (2009) A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol Psychiatry 14:381–389PubMedCrossRefGoogle Scholar
  116. Jin H, Oksenberg D, Ashkenazi A, Peroutka SJ, Duncan AM, Rozmahel R, Yang Y, Mengod G, Palacios JM, O'Dowd BF (1992) Characterization of the human 5-hydroxytryptamine1B receptor. J Biol Chem 267:5735–5738PubMedGoogle Scholar
  117. Jönsson EG, von Gertten C, Gustavsson JP, Yuan QP, Lindblad-Toh K, Forslund K, Rylander G, Mattila-Evenden M, Asberg M, Schalling M (2001) Androgen receptor trinucleotide repeat polymorphism and personality traits. Psychiatr Genet 11:19–23PubMedCrossRefGoogle Scholar
  118. Kalin NH (1999) Primate models to understand human aggression. J Clin Psychiatry 60(Suppl 15):29–32PubMedGoogle Scholar
  119. Kamata M, Suzuki A, Matsumoto Y, Shibuya N, Togashi H, Goto K, Otani K (2009) Association study between the -1021C/T polymorphism of the dopamine-beta-hydroxylase gene promoter and personality traits in healthy subjects. Neurosci Lett 462:54–57PubMedCrossRefGoogle Scholar
  120. Kiehl KA, Smith AM, Hare RD, Mendrek A, Forster BB, Bring J, Liddle PF (2001) Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biol Psychiatry 50:677–684PubMedCrossRefGoogle Scholar
  121. Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006) MAOA, maltreatment, and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol Psychiatry 11:903–913PubMedCrossRefGoogle Scholar
  122. Kinnally EL, Karere GM, Lyons LA, Mendoza SP, Mason WA, Capitanio JP (2010a) Serotonin pathway gene-gene and gene-environment interactions influence behavioral stress response in infant rhesus macaques. Dev Psychopathol 22:35–44PubMedCrossRefGoogle Scholar
  123. Kinnally EL, Tarara ER, Mason WA, Mendoza SP, Abel K, Lyons LA, Capitanio JP (2010b) Serotonin transporter expression is predicted by early life stress and is associated with disinhibited behavior in infant rhesus macaques. Genes Brain Behav 9:45–52PubMedCrossRefGoogle Scholar
  124. Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987) An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79PubMedCrossRefGoogle Scholar
  125. Koller G, Bondy B, Preuss UW, Zill P, Soyka M (2006) The C(−1019)G 5-HT1A promoter polymorphism and personality traits: no evidence for significant association in alcoholic patients. Behav Brain Funct 2:7PubMedCrossRefGoogle Scholar
  126. Kudielka BM, Wüst S (2010) Human models in acute and chronic stress: assessing determinants of individual hypothalamus-pituitary-adrenal axis activity and reactivity. Stress 13:1–14PubMedCrossRefGoogle Scholar
  127. Kulikova MA, Maluchenko NV, Timofeeva MA, Shlepzova VA, Schegolkova JV, Sysoeva OV, Ivanitsky AM, Tonevitsky AG (2008) Effect of functional catechol-O-methyltransferase Val158Met polymorphism on physical aggression. Bull Exp Biol Med 145:62–64PubMedCrossRefGoogle Scholar
  128. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X- linked spinal and bulbar muscular atrophy. Nature 352:77–79PubMedCrossRefGoogle Scholar
  129. Lachman HM, Nolan KA, Mohr P, Saito T, Volavka J (1998) Association between catechol O-methyltransferase genotype and violence in schizophrenia and schizoaffective disorder. Am J Psychiatry 155:835–837PubMedGoogle Scholar
  130. Lai BM, Cheung CL, Luk KD, Kung AW (2008) Estrogen receptor alpha CA dinucleotide repeat polymorphism is associated with rate of bone loss in perimenopausal women and bone mineral density and risk of osteoporotic fractures in postmenopausal women. Osteoporos Int 19:571–579PubMedCrossRefGoogle Scholar
  131. Lam LCW, Tang NLS, Ma SL, Zhang WM, Chiu HFK (2004) 5-HT(2A)T102C receptor polymorphism and neuropsychiatric symptoms in Alzheimer’s disease. Int J Geriatr Psychiatry 19:523–526PubMedCrossRefGoogle Scholar
  132. Lamouroux A, Vigny A, Faucon Biguet N, Darmon MC, Franck R, Henry JP, Mallet J (1987) The primary structure of human dopamine-beta-hydroxylase: insights into the relationship between the soluble and the membrane-bound forms of the enzyme. EMBO J 6:3931–3937PubMedGoogle Scholar
  133. Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, Brown GL, Naukkarinen H, Virkkunen M, Linnoila M, Goldman D (1998) Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 55:989–994PubMedCrossRefGoogle Scholar
  134. Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB, Vasquez AA, Chen W, Asherson P, Buitelaar J, Banaschewski T, Ebstein R, Gill M, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Sonuga-Barke E, Steinhausen HC, Taylor E, Daly M, Laird N, Lange C, Faraone SV (2008) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 147B:1345–1354PubMedCrossRefGoogle Scholar
  135. Lee BT, Ham BJ (2008) Monoamine oxidase A-uVNTR genotype affects limbic brain activity in response to affective facial stimuli. Neuroreport 19:515–519PubMedCrossRefGoogle Scholar
  136. Lee B, London ED, Poldrack RA, Farahi J, Nacca A, Monterosso JR, Mumford JA, Bokarius AV, Dahlbom M, Mukherjee J, Bilder RM, Brody AL, Mandelkern MA (2009) Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J Neurosci 29:14734–14740PubMedCrossRefGoogle Scholar
  137. Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD, Sequeira A, Kushwaha N, Morris SJ, Basak A, Ou XM, Albert PR (2003) Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 23:8788–8799PubMedGoogle Scholar
  138. Lesch KP (2005) Serotonergic gene inactivation in mice: models for anxiety and aggression? Novartis Found Symp 268:111–140PubMedCrossRefGoogle Scholar
  139. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Müller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531PubMedCrossRefGoogle Scholar
  140. Li D, He L (2006) Further clarification of the contribution of the tryptophan hydroxylase (TPH) gene to suicidal behavior using systematic allelic and genotypic meta-analyses. Hum Genet 119:233–240PubMedCrossRefGoogle Scholar
  141. Linnoila VM, Virkkunen M (1992) Aggression, suicidality, and serotonin. J Clin Psychiatry 53(Suppl):46–51PubMedGoogle Scholar
  142. Loehlin JC, Medland SE, Montgomery GW, Martin NG (2005) Eysenck’s psychoticism and the X-linked androgen receptor gene CAG polymorphisms in additional Australina samples. Pers Individ Dif 39:661–667CrossRefGoogle Scholar
  143. Loney BR, Butler MA, Lima EN, Counts CA, Eckel LA (2006) The relation between salivary cortisol, callous- unemotional traits, and conduct problems in an adolescent non-referred sample. J Child Psychol Psychiatry 47:30–36PubMedCrossRefGoogle Scholar
  144. Lopez de Lara C, Brezo J, Rouleau G, Lesage A, Dumont M, Alda M, Benkelfat C, Turecki G (2007) Effect of tryptophan hydroxylase-2 gene variants on suicide risk in major depression. Biol Psychiatry 62:72–80PubMedCrossRefGoogle Scholar
  145. Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM (1988) Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240:327–330PubMedCrossRefGoogle Scholar
  146. Lundin KB, Giwercman A, Dizeyi N, Giwercman YL (2007) Functional in vitro characterization of the androgen receptor GGN polymorphism. Mol Cell Endocrinol 264:184–187PubMedCrossRefGoogle Scholar
  147. Manuck SB, Flory JD, Ferrell RE, Dent KM, Mann JJ, Muldoon MF (1999) Aggression and anger-related traits associated with a polymorphism of the tryptophan hydroxylase gene. Biol Psychiatry 45:603–614PubMedCrossRefGoogle Scholar
  148. Marino MD, Bourdélat-Parks BN, Cameron Liles L, Weinshenker D (2005) Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197–203PubMedCrossRefGoogle Scholar
  149. Martinez-Conde E, Leret ML, Diaz S (1985) The influence of testosterone in the brain of the male rat on levels of serotonin and hydroxyindole-acetic acid (5-HIAA). Comp Biochem Physiol 80:411–414Google Scholar
  150. McDermott R, Tingley D, Cowden J, Frazzetto G, Johnson DD (2009) Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proc Natl Acad Sci USA 106:2118–2123PubMedCrossRefGoogle Scholar
  151. Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274PubMedCrossRefGoogle Scholar
  152. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225PubMedGoogle Scholar
  153. Moffitt TE, Caspi A, Rutter M, Silva PA (2001) Sex differences in antisocial behaviour: conduct disorder, delinquency and violence in the Dunedin Longitudinal Study. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  154. Mouri K, Hishimoto A, Fukutake M, Shiroiwa K, Asano M, Nagasaki Y, Ueno Y, Shirakawa O, Nishiguchi N, Maeda K (2009) TPH2 is not a susceptibility gene for suicide in Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 33:1546–1550PubMedCrossRefGoogle Scholar
  155. Muráni E, Ponsuksili S, D'Eath RB, Turner SP, Kurt E, Evans G, Thölking L, Klont R, Foury A, Mormède P, Wimmers K (2010) Association of HPA axis-related genetic variation with stress reactivity and aggressive behaviour in pigs. BMC Genet 11:74PubMedCrossRefGoogle Scholar
  156. Naoess O (1976) Characterization of the androgen receptors in the hypothalamus, preoptic area and brain cortex of the rat. Steroids 17:167–185CrossRefGoogle Scholar
  157. New AS, Gelernter J, Goodman M, Mitropoulou V, Koenigsberg H, Silverman J, Siever LJ (2001) Suicide, impulsive aggression, and HTR1B genotype. Biol Psychiatry 50:62–65PubMedCrossRefGoogle Scholar
  158. Nielsen SD, Storgaard H, Moesgaard F, Gluud C (1994) Prevalence of alcohol-problems among adult somatic inpatients of a Copenhagen hospital. Alcohol Alcohol 29:583–590PubMedGoogle Scholar
  159. Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565PubMedGoogle Scholar
  160. Nishiguchi N, Shirakawa O, Ono H, Nishimura A, Nushida H, Ueno Y, Maeda K (2001) Brief research communication — no evidence of an association between 5HT1B receptor gene polymorphism and suicide victims in a Japanese population. Am J Med Genet 105:343–345PubMedCrossRefGoogle Scholar
  161. Nobile M, Rusconi M, Bellina M, Marino C, Giorda R, Carlet O, Vanzin L, Molteni M, Battaglia M (2010) COMT Val158Met polymorphism and socioeconomic status interact to predict attention deficit/hyperactivity problems in children aged 10–14. Eur Child Adolesc Psychiatry 19:549–557PubMedCrossRefGoogle Scholar
  162. Nolan KA, Volavka J, Lachman HM, Saito T (2000) An association between a polymorphism of the tryptophan hydroxylase gene and aggression in schizophrenia and schizoaffective disorder. Psychiatr Genet 10:109–115PubMedCrossRefGoogle Scholar
  163. Nomura M, Nomura Y (2006) Psychological, neuroimaging, and biochemical studies on functional association between impulsive behavior and the 5-HT2A receptor gene polymorphism in humans. Ann N Y Acad Sci 1086:134–143PubMedCrossRefGoogle Scholar
  164. Nomura M, Kusumi I, Kaneko M, Masui T, Daiguji M, Ueno T, Koyama T, Nomura Y (2006) Involvement of a polymorphism in the 5-HT2A receptor gene in impulsive behavior. Psychopharmacology (Berl) 187:30–35CrossRefGoogle Scholar
  165. Nordquist N, Oreland L (2010) Serotonin, genetic variability, behavior, and psychiatric disorders – a review. Ups J Med Sci 115:2–10PubMedCrossRefGoogle Scholar
  166. Olivier B, van Oorschot (2005) 5-HT1B receptors and aggression: a review. Eur J Pharmacol 526:207–217PubMedCrossRefGoogle Scholar
  167. Ou XM, Chen K, Shih JC (2006) Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. J Biol Chem 281:21512–21525PubMedCrossRefGoogle Scholar
  168. Pajer K, Tabbah R, Gardner W, Rubin RT, Czambel RK, Wang Y (2006) Adrenal androgen and gonadal hormone levels in adolescent girls with conduct disorder. Psychoneuroendocrinology 31:1245–1256PubMedCrossRefGoogle Scholar
  169. Parmigiani S, Dadomo H, Bartolomucci A, Brain PF, Carbucicchio A, Costantino C, Ferrari PF, Palanza P, Volpi R (2009) Personality traits and endocrine response as possible asymmetry factors of agonistic outcome in karate athletes. Aggress Behav 35:324–333PubMedCrossRefGoogle Scholar
  170. Patkar AA, Berrettini WH, Hoehe M, Thornton CC, Gottheil E, Hill K, Weinstein SP (2002) Serotonin transporter polymorphisms and measures of impulsivity, aggression, and sensation seeking among African-American cocaine-dependent individuals. Psychiatry Res 110:103–115PubMedCrossRefGoogle Scholar
  171. Perez-Rodriguez MM, Weinstein S, New AS, Bevilacqua L, Yuan Q, Zhou Z, Hodgkinson C, Goodman M, Koenigsberg HW, Goldman D, Siever LJ (2010) Tryptophan-hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls. J Psychiatr Res 44:1075–1081PubMedCrossRefGoogle Scholar
  172. Philibert RA, Wernett P, Plume J, Packer H, Brody GH, Beach SR (2011) Gene environment interactions with a novel variable Monoamine Oxidase A transcriptional enhancer are associated with antisocial personality disorder. Biol Psychol 36:366–371CrossRefGoogle Scholar
  173. Ponglikitmongkol M, Green S, Chambon P (1988) Genomic organization of the human oestrogen receptor gene. EMBO J 7:3385–3388PubMedGoogle Scholar
  174. Popma A, Doreleijers TA, Jansen LMC, Van Goozen SHM, van Engeland H, Vermeiren R (2007) The diurnal cortisol cycle in delinquent male adolescents and normal controls. Neuropsychopharmacology 32:1622–1628PubMedCrossRefGoogle Scholar
  175. Preuss UW, Koller G, Bondy B, Bahlmann M, Soyka M (2001) Impulsive traits and 5-HT2A receptor promoter polymorphism in alcohol dependents: possible association but no influence of personality disorders. Neuropsychobiology 43:186–191PubMedCrossRefGoogle Scholar
  176. Prichard Z, Jorm AF, Prior M, Sanson A, Smart D, Zhang Y, Huttley G, Easteal S (2002) Association of polymorphisms of the estrogen receptor gene with anxiety-related traits in children and adolescents: a longitudinal study. Am J Med Genet 114:169–176PubMedCrossRefGoogle Scholar
  177. Prichard ZM, Jorm AF, Mackinnon A, Easteal S (2007) Association analysis of 15 polymorphisms within 10 candidate genes for antisocial behavioural traits. Psychiatr Genet 17:299–303PubMedCrossRefGoogle Scholar
  178. Prichard Z, Mackinnon A, Jorm AF, Easteal S (2008) No evidence for interaction between MAOA and childhood adversity for antisocial behavior. Am J Med Genet B Neuropsychiatr Genet 147B:228–232PubMedCrossRefGoogle Scholar
  179. Pritchard AL, Pritchard CW, Bentham P, Lendon CL (2007) Role of serotonin transporter polymorphisms in the behavioural and psychological symptoms in probable Alzheimer disease patients. Dement Geriatr Cogn Disord 24:201–206PubMedCrossRefGoogle Scholar
  180. Rajender S, Pandu G, Sharma JD, Gandhi KPC, Singh L, Thangaraj K (2008) Reduced CAG repeats length in androgen receptor gene is associated with violent criminal behavior. Int J Legal Med 122:367–372PubMedCrossRefGoogle Scholar
  181. Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90:2542–2546PubMedCrossRefGoogle Scholar
  182. Rand MR, Robinson JE (2011) Criminal Victimization in the United States, 2008 - Statistical Tables. Report of the Bureau of Justice Statistics No. NCJ-231173. Available at:
  183. Räsänen P, Hakko H, Visuri S, Paanila J, Kapanen P, Suomela T, Tiihonen J (1999) Serum testosterone levels, mental disorders and criminal behaviour. Acta Psychiatr Scand 1:348–352Google Scholar
  184. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19PubMedCrossRefGoogle Scholar
  185. Retz W, Retz-Junginger P, Supprian T, Thome J, Rösler M (2004) Association of serotonin transporter promoter gene polymorphism with violence: relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behav Sci Law 22:415–425PubMedCrossRefGoogle Scholar
  186. Reuter M, Esslinger C, Montag C, Lis S, Gallhofer B, Kirsch P (2008) A functional variant of the tryptophan hydroxylase 2 gene impacts working memory: a genetic imaging study. Biol Psychol 79:111–117PubMedCrossRefGoogle Scholar
  187. Rhee SH, Waldman ID (2002) Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull 128:490–529PubMedCrossRefGoogle Scholar
  188. Robinson MD, Wilkowski BN (2010) Personality processes in anger and reactive aggression: an introduction. J Pers 78:1–8Google Scholar
  189. Rondou P, Haegeman G, Van Craenenbroeck K (2010) The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci 67:1971–1986PubMedCrossRefGoogle Scholar
  190. Rowe R, Maughan B, Worthman CM, Costello EJ, Angold A (2004) Testosterone, antisocial behavior, and social dominance in boys: pubertal development and biosocial interaction. Biol Psychiatry 55:546–552PubMedCrossRefGoogle Scholar
  191. Rujescu D, Giegling I, Bondy B, Gietl A, Zill P, Möller HJ (2002) Association of anger-related traits with SNPs in the TPH gene. Mol Psychiatry 7:1023–1029PubMedCrossRefGoogle Scholar
  192. Rujescu D, Giegling I, Gietl A, Hartmann AM, Möller HJ (2003a) A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits. Biol Psychiatry 54:34–39PubMedCrossRefGoogle Scholar
  193. Rujescu D, Giegling I, Sato T, Moller HJ (2003b) Lack of association between serotonin 5-HT1B receptor gene polymorphism and suicidal behavior. Am J Med Genet B Neuropsychiatr Genet 116B:69–71PubMedCrossRefGoogle Scholar
  194. Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279PubMedCrossRefGoogle Scholar
  195. Sakai JT, Young SE, Stallings MC, Timberlake D, Smolen A, Stetler GL, Crowley TJ (2006) Case-control and within-family tests for an association between conduct disorder and 5HTTLPR. Am J Med Genet B Neuropsychiatr Genet 141B:825–832PubMedCrossRefGoogle Scholar
  196. Sakowski SA, Geddes TJ, Thomas DM, Levi E, Hatfield JS, Kuhn DM (2006) Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res 1085:11–18PubMedCrossRefGoogle Scholar
  197. Salvadora A, Suay F, Martinez-Sanchis S, Simon VM, Brain PF (1999) Correlating testosterone and fighting in male participants in judo contests. Physiol Behav 68:205–209PubMedCrossRefGoogle Scholar
  198. Sanchez-Martin E, Fano L, Ahedo J, Cardas J, Brain PF, Azpíroz A (2000) Relating testosterone levels and free play social behavior in male and female preschool children. Psychoneuroendocrinology 8:773–783CrossRefGoogle Scholar
  199. Sawiniec J, Borkowski K, Ginalska G, Lewandowska-Stanek H (2007) Association between 5-hydroxytryptamine 1A receptor gene polymorphism and suicidal behavior. Przegl Lek 64:208–211PubMedGoogle Scholar
  200. Scaramella TJ, Brown WA (1978) Serum testosterone and aggressiveness in hockey players. Psychosom Med 40:262–265PubMedGoogle Scholar
  201. Schaal B, Tremblay RE, Soussignan R, Susman EJ (1996) Male testosterone linked to high social dominance but low physical aggression in early adolescence. J Am Acad Child Adolesc Psychiatry 35:1322–1330PubMedCrossRefGoogle Scholar
  202. Scherk H, Gruber O, Menzel P, Schneider-Axmann T, Kemmer C, Usher J, Reith W, Meyer J, Falkai P (2009) 5-HTTLPR genotype influences amygdala volume. Eur Arch Psychiatry Clin Neurosci 259:212–217PubMedCrossRefGoogle Scholar
  203. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P, Heinz A, Walther DJ, Priller J (2007) Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons. Biol Psychiatry 62:1288–1294PubMedCrossRefGoogle Scholar
  204. Schlinger BA, Callard GV (1990) Aromatization mediates aggressive behavior in quail. Gen Compar Endocrinol 79:39–53CrossRefGoogle Scholar
  205. Schneier FR, Martinez D, Abi-Dargham A, Zea-Ponce Y, Simpson HB, Liebowitz MR, Laruelle M (2008) Striatal dopamine D(2) receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depress Anxiety 25:1–7PubMedCrossRefGoogle Scholar
  206. Schneier FR, Abi-Dargham A, Martinez D, Slifstein M, Hwang DR, Liebowitz MR, Laruelle M (2009) Dopamine transporters, D2 receptors, and dopamine release in generalized social anxiety disorder. Depress Anxiety 26:411–418PubMedCrossRefGoogle Scholar
  207. Sheehan K, Lowe N, Kirley A, Mullins C, Fitzgerald M, Gill M, Hawi Z (2005) ptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Mol Psychiatry 10:944–949PubMedCrossRefGoogle Scholar
  208. Shih JC, Grimsby J, Chen K, Zhu QS (1993) Structure and promoter organization of the human monoamine oxidase A and B genes. J Psychiatry Neurosci 18:25–32PubMedGoogle Scholar
  209. Shirtcliff EA, Granger DA, Booth A, Johnson D (2005) Low salivary cortisol levels and externalizing behavior problems in youth. Dev Psychopathol 17:167–184PubMedCrossRefGoogle Scholar
  210. Silva H, Iturra P, Solari A, Villarroel J, Jerez S, Jiménez M, Galleguillos F, Bustamante ML (2010) Fluoxetine response in impulsive-aggressive behavior and serotonin transporter polymorphism in personality disorder. Psychiatr Genet 20:25–30PubMedCrossRefGoogle Scholar
  211. Smolka MN, Schumann G, Wrase J, Grüsser SM, Flor H, Mann K, Braus DF, Goldman D, Büchel C, Heinz A (2005) Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. J Neurosci 25:836–842PubMedCrossRefGoogle Scholar
  212. Soyka M, Preuss UW, Koller G, Zill P, Bondy B (2004) Association of 5-HT1B receptor gene and antisocial behavior in alcoholism. J Neural Transm 111:101–109Google Scholar
  213. Stefulj J, Buttner A, Skavic J, Zill P, Balija M, Eisenmenger W, Bondy B, Jernej B (2004) Serotonin 1B (5HT-1B) receptor polymorphism (G861C) in suicide victims: association studies in German and Slavic population. Am J Med Genet B Neuropsychiatr Genet 127B:48–50PubMedCrossRefGoogle Scholar
  214. Strange PG (1993) Dopamine receptors: structure and function. Prog Brain Res 99:167–179PubMedCrossRefGoogle Scholar
  215. Strobel A, Gutknecht L, Rothe C, Reif A, Mössner R, Zeng Y, Brocke B, Lesch KP (2003) Allelic variation in 5-HT1A receptor expression is associated with anxiety- and depression-related personality traits. J Neural Transm 110:1445–1453PubMedCrossRefGoogle Scholar
  216. Strous RD, Bark N, Parsia SS, Volavka J, Lachman HM (1997) Analysis of a functional catechol-O- methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior. Psychiatry Res 69:71–77PubMedCrossRefGoogle Scholar
  217. Strous RD, Ritsner MS, Adler S, Ratner Y, Maayan R, Kotler M, Lachman H, Weizman A (2009) Improvement of aggressive behavior and quality of life impairment following S-adenosyl-methionine (SAM-e) augmentation in schizophrenia. Eur Neuropsychopharmacol 19:14–22PubMedCrossRefGoogle Scholar
  218. Sukonick DL, Pollock BG, Sweet RA, Mulsant BH, Rosen J, Klunk WE, Kastango KB, DeKosky ST, Ferrell RE (2001) The 5-HTTPR*S/*L polymorphism and aggressive behavior in Alzheimer disease. Arch Neurol 58:1425–1428PubMedCrossRefGoogle Scholar
  219. Sumner BE, Fink G (1998) Testosterone as well as estrogen increases serotonin2A receptor mRNA and binding site densities in the male rat brain. Brain Res Mol Brain Res 59:205–214PubMedCrossRefGoogle Scholar
  220. Sweet RA, Pollock BG, Sukonick DL, Mulsant BH, Rosen J, Klunk WE, Kastango KB, DeKosky ST, Ferrell RE (2001) The 5-HTTPR polymorphism confers liability to a combined phenotype of psychotic and aggressive behavior in Alzheimer disease. Int Psychogeriatr 13:401–419PubMedCrossRefGoogle Scholar
  221. Sysoeva OV, Maluchenko NV, Timofeeva MA, Portnova GV, Kulikova MA, Tonevitsky AG, Ivanitsky AM (2009) Aggression and 5HTT polymorphism in females: study of synchronized swimming and control groups. Int J Psychophysiol 72:173–178PubMedCrossRefGoogle Scholar
  222. Tang Y, Anderson GM, Zabetian CP, Köhnke MD, Cubells JF (2005) Haplotype-controlled analysis of the association of a non-synonymous single nucleotide polymorphism at DBH (+ 1603 C → T) with plasma dopamine beta-hydroxylase activity. Am J Med Genet B Neuropsychiatr Genet 139B:88–90PubMedCrossRefGoogle Scholar
  223. Tang Y, Buxbaum SG, Waldman I, Anderson GM, Zabetian CP, Köhnke MD, Cubells JF (2006) A single nucleotide polymorphism at DBH, possibly associated with attention-deficit/ hyperactivity disorder, associates with lower plasma dopamine beta-hydroxylase activity and is in linkage disequilibrium with two putative functional single nucleotide polymorphisms. Biol Psychiatry 60:1034–1038PubMedCrossRefGoogle Scholar
  224. Tansey KE, Hill MJ, Cochrane LE, Gill M, Anney RJ, Gallagher L (2011) Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism. Mol Autism 2:3PubMedCrossRefGoogle Scholar
  225. Terburg D, Morgan B, van Honk J (2009) The testosterone-cortisol ratio: A hormonal marker for proneness to social aggression. Int J Law Psychiatry 32:216–223PubMedCrossRefGoogle Scholar
  226. Thomason ME, Dougherty RF, Colich NL, Perry LM, Rykhlevskaia EI, Louro HM, Hallmayer JF, Waugh CE, Bammer R, Glover GH, Gotlib IH (2010) COMT genotype affects prefrontal white matter pathways in children and adolescents. Neuroimage 53:926–934PubMedCrossRefGoogle Scholar
  227. Tiemeier H, Schuit SC, den Heijer T, van Meurs JB, van Tuijl HR, Hofman A, Breteler MM, Pols HA, Uitterlinden AG (2005) Estrogen receptor alpha gene polymorphisms and anxiety disorder in an elderly population. Mol Psychiatry 10:806–807PubMedCrossRefGoogle Scholar
  228. Trainor BC, Kyomen HH, Marler CA (2006) Estrogenic encounters: How interactions between aromatase and the environment modulate aggression. Front Neuroendocrinol 27:170–179PubMedCrossRefGoogle Scholar
  229. Tuinier S, Verhoeven WM, van Praag HM (1995) Cerebrospinal fluid 5-hydroxyindolacetic acid and aggression: a critical reappraisal of the clinical data. Int Clin Psychopharmacol 10:147–156PubMedCrossRefGoogle Scholar
  230. Turakulov R, Jorm AF, Jacomb PA, Tan X, Easteal S (2004) Association of dopamine-beta-hydroxylase and androgen receptor gene polymorphisms with Eysenck’s P and other personality traits. Pers Individ Dif 37:191–202CrossRefGoogle Scholar
  231. Tuvblad C, Raine A, Zheng M, Baker LA (2009) Genetic and environmental stability differs in reactive and proactive aggression. Aggress Behav 35:437–452PubMedCrossRefGoogle Scholar
  232. van Bokhoven I, Van Goozen SHM, van Engeland H, Schaal B, Arseneault L, Séguin JR, Nagin DS, Vitaro F, Tremblay RE (2005) Salivary cortisol and aggression in a population-based longitudinal study of adolescent males. J Neural Transm 112:1083–1096PubMedCrossRefGoogle Scholar
  233. van Bokhoven I, Van Goozen SHM, van Engeland H, Schaal B, Arseneault L, Séguin JR, Assaad JM, Nagin DS, Vitaro F, Tremblay RE (2006) Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Horm Behav 50:118–125PubMedCrossRefGoogle Scholar
  234. van Honk J, Harmon-Jones E, Morgan BE, Schutter DJ (2010) Socially explosive minds: the triple imbalance hypothesis of reactive aggression. J Pers 78:67–94PubMedCrossRefGoogle Scholar
  235. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14(4):1104–1106PubMedCrossRefGoogle Scholar
  236. VanNess SH, Owens MJ, Kilts CD (2005) The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 6:55PubMedCrossRefGoogle Scholar
  237. Vaske J, Wright JP, Beaver KM (2011) A Dopamine gene (DRD2) distinguishes between offenders who have and have not been violently victimized. Int J Offender Ther Comp Criminol 55:251–267PubMedCrossRefGoogle Scholar
  238. Vaughn MC, DeLisi M, Beaver KM, Wright JP (2009) DAT1 and 5HTT are associated with pathological criminal behavior in a nationally representative sample of youth. Crim Justice Behav 36:1113–1324CrossRefGoogle Scholar
  239. Veenema AH, Neumann ID (2008) Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog Barin Res 170:261–276CrossRefGoogle Scholar
  240. Videtic A, Pungercic G, Pajnic IZ, Zupanc T, Balazic J, Tomori M, Komel R (2006) Association study of seven polymorphisms in four serotonin receptor genes on suicide victims. Am J Med Genet B Neuropsychiatr Genet 141B:669–672PubMedCrossRefGoogle Scholar
  241. Virkkunen M, Rissanen A, Naukkarinen H, Franssila-Kallunki A, Linnoila M, Tiihonen J (2007) Energy substrate metabolism among habitually violent alcoholic offenders having antisocial personality disorder. Psychiatry Res 150:287–295PubMedCrossRefGoogle Scholar
  242. Virkkunen M, Rissanen A, Franssila-Kallunki A, Tiihonen J (2009) Low non-oxidative glucose metabolism and violent offending: an 8-year prospective follow-up study. Psychiatry Res 168:26–31PubMedCrossRefGoogle Scholar
  243. Volavka J, Bilder R, Nolan K (2004) Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann N Y Acad Sci 1036:393–398PubMedCrossRefGoogle Scholar
  244. von der Pahlen B (2005) The role of alcohol and steroid hormones in human aggression. Vitam Horm 70:415–437PubMedCrossRefGoogle Scholar
  245. von der Pahlen B, Sarkola T, Seppä K, Eriksson CJP (2002) Testosterone, 5 alpha-dihydrotestosterone and cortisol in men with and without alcohol-related aggression. J Stud Alcohol 63:518–526Google Scholar
  246. Wagner S, Baskaya O, Anicker NJ, Dahmen N, Lieb K, Tadić A (2010) The catechol o-methyltransferase (COMT) val(158)met polymorphism modulates the association of serious life events (SLE) and impulsive aggression in female patients with borderline personality disorder (BPD). Acta Psychiatr Scand 122:110–117PubMedCrossRefGoogle Scholar
  247. Walf AA, Frye CA (2010) Estradiol reduces anxiety- and depression-like behavior of aged female mice. Physiol Behav 99:169–174PubMedCrossRefGoogle Scholar
  248. Walf AA, Koonce CJ, Frye CA (2008) Estradiol or diarylpropionitrile decrease anxiety-like behavior of wildtype, but not estrogen receptor beta knockout, mice. Behav Neurosci 122:974–981PubMedCrossRefGoogle Scholar
  249. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680PubMedCrossRefGoogle Scholar
  250. Walther DJ, Peter JU, Bashammakh S, Hörtnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76PubMedCrossRefGoogle Scholar
  251. Westberg L, Eriksson E (2008) Sex steroid-related candidate genes in psychiatric disorders. J Psychiatry Neurosci 33:319–330PubMedGoogle Scholar
  252. Westberg L, Melke J, Landen M, Nilsson S, Baghaei F, Rosmond R, Jansson M, Holm G, Björntorp P, Eriksson E (2003) Association between a dinucleotide repeat polymorphism of the estrogen receptor alpha gene and personality traits in women. Mol Psychiatry 8:118–122PubMedCrossRefGoogle Scholar
  253. Westberg L, Henningsson S, Landén M, Annerbrink K, Melke J, Nilsson S, Rosmond R, Holm G, Anckarsäter H, Eriksson E (2009) Influence of androgen receptor repeat polymorphisms on personality traits in men. J Psychiatry Neurosci 34:205–213PubMedGoogle Scholar
  254. Wilson M, Daly M (1985) Competitiveness, risk-taking, and violence - the Young Male Syndrome. Ethol Sociobiol 6:59–73CrossRefGoogle Scholar
  255. Winqvist R, Lundstrom K, Salminen M, Laatikainen M, Ulmanen I (1991) Mapping of human catechol-O- methyltransferase gene to 22q11.2 and detection of a frequent RFLP with BglI. Cytogenet Cell Genet 58:2051Google Scholar
  256. Wu Y, Xu Y, Sun Y, Wang YF, Li X, Lang XE, Wang WP, Zhang KR (2008) Association between the serotonin 1A receptor C(−1019)G polymorphism and major depressive disorder in the northern Han ethnic group in China. Chin Med J (Engl) 121:874–876Google Scholar
  257. Yaich L, Dupont WD, Cavener DR, Parl FF (1992) Analysis of the PvuII restriction fragment-length polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood. Cancer Res 52:77–83PubMedGoogle Scholar
  258. Yu YZ, Shi JX (2009) Relationship between levels of testosterone and cortisol in saliva and aggressive behaviors of adolescents. Biomed Environ Sci 22:44–49PubMedCrossRefGoogle Scholar
  259. Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, Kim KS, Kim CH, Malison RT, Gelernter J, Cubells JF (2001) A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet 68:515–522PubMedCrossRefGoogle Scholar
  260. Zai CC, Ehtesham S, Choi E, Nowrouzi B, de Luca V, Davidge K, Freeman N, King N, Kennedi JL, Beitchman JH. Dopaminergic system genes in childhood aggression: Possible role for DRD2. World J Biol Psychiatry (in press) doi:10.3109/15622975.2010.543431
  261. Zalsman G, Frisch A, Bromberg M, Gelernter J, Michaelovsky E, Campino A, Erlich Z, Tyano S, Apter A, Weizman A (2001) Family-based association study of serotonin transporter promoter in suicidal adolescents: no association with suicidality but possible role in violence traits. Am J Med Genet 105:239–245PubMedCrossRefGoogle Scholar
  262. Zalsman G, Frisch A, Baruch-Movshovits R, Sher L, Michaelovsky E, King RA, Fischel T, Hermesh H, Goldberg P, Gorlyn M, Misgav S, Apter A, Tyano S, Weizman A (2005) Family-based association study of 5-HT(2A) receptor T102C polymorphism and suicidal behavior in Ashkenazi inpatient adolescents. Int J Adolesc Med Health 17:231–238PubMedCrossRefGoogle Scholar
  263. Zalsman G, Patya M, Frisch A, Ofek H, Schapir L, Blum I, Harell D, Apter A, Weizman A, Tyano S (2011) Association of polymorphisms of the serotonergic pathways with clinical traits of impulsive-aggression and suicidality in adolescents: a multi-center study. World J Biol Psychiatry 12:33–41PubMedCrossRefGoogle Scholar
  264. Zammit S, Jones G, Jones SJ, Norton N, Sanders RD, Milham C, McCarthy GM, Jones LA, Cardno AG, Gray M, Murphy KC, O'Donovan MC, Owen MJ (2004) Polymorphisms in the MAOA, MAOB, and COMT genes and aggressive behavior in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 128B:19–20PubMedCrossRefGoogle Scholar
  265. Zill P, Buttner A, Eisenmenger W, Moller HJ, Ackenheil M, Bondy B (2007) Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: a post-mortem study. J Psychiatr Res 41:168–173PubMedCrossRefGoogle Scholar
  266. Zimmermann P, Mohr C, Spangler G (2009) Genetic and attachment influences on adolescents' regulation of autonomy and aggressiveness. J Child Psychol Psychiatry 50:1339–1347PubMedCrossRefGoogle Scholar
  267. Zouk H, McGirr A, Lebel V, Benkelfat C, Rouleau G, Turecki G (2007) The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide. Am J Med Genet B Neuropsychiatr Genet 144B:996–1002PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2011

Authors and Affiliations

  • Konstantin A. Pavlov
    • 2
  • Dimitry A. Chistiakov
    • 1
  • Vladimir P. Chekhonin
    • 1
    • 2
  1. 1.Department of Medicinal NanobiotechnologyPirogov Russian State Medical UniversityMoscowRussia
  2. 2.Department of Fundamental and Applied NeurobiologySerbsky State Research Center of Forensic and Social PsychiatryMoscowRussia

Personalised recommendations