Journal of Applied Genetics

, Volume 53, Issue 2, pp 149–158 | Cite as

Current approaches to micro-RNA analysis and target gene prediction

Human Genetics • Review


It is becoming increasingly evident that micro-RNAs (miRNA) play a significant role in regulating the cellular machinery. These ∼22-nt non-coding RNAs function as negative regulators of gene expression. Since their discovery, considerable information has been obtained on miRNA biology and the mechanism of their action. Guidelines have been established for miRNA nomenclature and databases have been built to house all miRNA from many species. A number of methodologies are available for miRNA analysis. There is a lot of interest in developing bioinformatics approaches to predict miRNA target genes. This article will bring together the information on our current knowledge of miRNA biology, the approaches for miRNA analysis, and computational strategies to gain insight in miRNA functional roles.


Gene expression Micro RNA Target genes 


  1. Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25(23):3049–3055. doi:10.1093/bioinformatics/btp565 PubMedCrossRefGoogle Scholar
  2. Allawi HT, Dahlberg JE, Olson S, Lund E, Olson M, Ma WP, Takova T, Neri BP, Lyamichev VI (2004) Quantitation of microRNAs using a modified Invader assay. RNA 10(7):1153–1161PubMedCrossRefGoogle Scholar
  3. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871 PubMedCrossRefGoogle Scholar
  4. Ando Y, Maida Y, Morinaga A, Burroughs AM, Kimura R, Chiba J, Suzuki H, Masutomi K, Hayashizaki Y (2011) Two-step cleavage of hairpin RNA with 5′ overhangs by human DICER. BMC Mol Biol 12:6PubMedCrossRefGoogle Scholar
  5. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71PubMedCrossRefGoogle Scholar
  6. Banerjee S, Wang Z, Mohammad M, Sarkar FH, Mohammad RM (2008) Efficacy of selected natural products as therapeutic agents against cancer. J Nat Prod 71(3):492–496PubMedCrossRefGoogle Scholar
  7. Berninger P, Gaidatzis D, van Nimwegen E, Zavolan M (2008) Computational analysis of small RNA cloning data. Methods 44(1):13–21PubMedCrossRefGoogle Scholar
  8. Boissonneault V, St-Gelais N, Plante I, Provost P (2008) A polymerase chain reaction-based cloning strategy applicable to functional microRNA studies. Anal Biochem 381(1):166–168PubMedCrossRefGoogle Scholar
  9. Brockman JM, Singh P, Liu D, Quinlan S, Salisbury J, Graber JH (2005) PACdb: PolyA Cleavage Site and 3′-UTR Database. Bioinformatics 21(18):3691–3693. doi:10.1093/bioinformatics/bti589 PubMedCrossRefGoogle Scholar
  10. Chan HM, Chan LS, Wong RN, Li HW (2010) Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy. Anal Chem 82(16):6911–6918PubMedCrossRefGoogle Scholar
  11. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179PubMedCrossRefGoogle Scholar
  12. Chen C, Tan R, Wong L, Fekete R, Halsey J (2011) Quantitation of microRNAs by real-time RT-qPCR. Meth Mol Biol 687:113–134CrossRefGoogle Scholar
  13. Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13(8):1198–1204PubMedCrossRefGoogle Scholar
  14. Fiedler SD, Carletti MZ, Christenson LK (2010) Quantitative RT-PCR methods for mature microRNA expression analysis. Meth Mol Biol 630:49–64CrossRefGoogle Scholar
  15. Frazier TP, Zhang B (2011) Identification of plant microRNAs using expressed sequence tag analysis. Meth Mol Biol 678:13–25CrossRefGoogle Scholar
  16. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–1006PubMedCrossRefGoogle Scholar
  17. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640PubMedCrossRefGoogle Scholar
  18. Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32(Database issue):D109–D111. doi:10.1093/nar/gkh023 PubMedCrossRefGoogle Scholar
  19. Griffiths-Jones S (2010) miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics Chapter 12:Unit 12 19 11–10Google Scholar
  20. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144PubMedCrossRefGoogle Scholar
  21. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158. doi:10.1093/nar/gkm952 PubMedGoogle Scholar
  22. Guo L, Lu Z (2010) Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data. Comput Biol Chem 34(3):165–171PubMedCrossRefGoogle Scholar
  23. Havecker ER (2011) Detection of small RNAs and microRNAs using deep sequencing technology. Meth Mol Biol 732:55–68CrossRefGoogle Scholar
  24. Huang Y, Zou Q, Song H, Song F, Wang L, Zhang G, Shen X (2010) A study of miRNAs targets prediction and experimental validation. Protein Cell 1(11):979–986PubMedCrossRefGoogle Scholar
  25. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838PubMedCrossRefGoogle Scholar
  26. Kang WJ, Cho YL, Chae JR, Lee JD, Choi KJ, Kim S (2011) Molecular beacon-based bioimaging of multiple microRNAs during myogenesis. Biomaterials 32(7):1915–1922PubMedCrossRefGoogle Scholar
  27. Kast J (2011) A quick reality check for microRNA target prediction. Expert Rev Proteomics 8(2):149–152PubMedCrossRefGoogle Scholar
  28. Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35(7):368–376PubMedCrossRefGoogle Scholar
  29. Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19(1):1–15PubMedCrossRefGoogle Scholar
  30. Koscianska E, Starega-Roslan J, Sznajder LJ, Olejniczak M, Galka-Marciniak P, Krzyzosiak WJ (2011) Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC Mol Biol 12:14PubMedCrossRefGoogle Scholar
  31. Koshiol J, Wang E, Zhao Y, Marincola F, Landi MT (2010) Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidemiol Biomarkers Prev 19(4):907–911PubMedCrossRefGoogle Scholar
  32. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157PubMedCrossRefGoogle Scholar
  33. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281PubMedCrossRefGoogle Scholar
  34. Krutzfeldt J, Poy MN, Stoffel M (2006) Strategies to determine the biological function of microRNAs. Nat Genet 38(Suppl):S14–S19PubMedCrossRefGoogle Scholar
  35. Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44(1):47–54. doi:10.1016/j.ymeth.2007.09.005 PubMedCrossRefGoogle Scholar
  36. Kulkarni M, Ozgur S, Stoecklin G (2010) On track with P-bodies. Biochem Soc Trans 38(Pt 1):242–251PubMedCrossRefGoogle Scholar
  37. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858PubMedCrossRefGoogle Scholar
  38. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862PubMedCrossRefGoogle Scholar
  39. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864PubMedCrossRefGoogle Scholar
  40. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefGoogle Scholar
  41. Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K (2010) Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 16(11):2170–2180PubMedCrossRefGoogle Scholar
  42. Li W, Ruan K (2009) MicroRNA detection by microarray. Anal Bioanal Chem 394(4):1117–1124PubMedCrossRefGoogle Scholar
  43. Li J, Yao B, Huang H, Wang Z, Sun C, Fan Y, Chang Q, Li S, Wang X, Xi J (2009) Real-time polymerase chain reaction microRNA detection based on enzymatic stem-loop probes ligation. Anal Chem 81(13):5446–5451PubMedCrossRefGoogle Scholar
  44. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299(5612):1540PubMedCrossRefGoogle Scholar
  45. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101(26):9740–9744PubMedCrossRefGoogle Scholar
  46. Lopez-Gomollon S (2011) Detecting sRNAs by Northern blotting. Meth Mol Biol 732:25–38CrossRefGoogle Scholar
  47. Mandir JB, Lockett MR, Phillips MF, Allawi HT, Lyamichev VI, Smith LM (2009) Rapid determination of RNA accessible sites by surface plasmon resonance detection of hybridization to DNA arrays. Anal Chem 81(21):8949–8956PubMedCrossRefGoogle Scholar
  48. Maziere P, Enright A (2007) Prediction of microRNA targets. Drug Discovery Today 12(11–12):452–458. doi:10.1016/j.drudis.2007.04.002 PubMedCrossRefGoogle Scholar
  49. Michael MZ (2006) Cloning microRNAs from mammalian tissues. Meth Mol Biol 342:189–207Google Scholar
  50. Min H, Yoon S (2010) Got target? computational methods for microRNA target prediction and their extension. Experimental Mol Med 42(4):233. doi:10.3858/emm.2010.42.4.032 CrossRefGoogle Scholar
  51. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL (2010) Structure and activity of putative intronic miRNA promoters. RNA 16(3):495–505PubMedCrossRefGoogle Scholar
  52. Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, Lai EC (2008) The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453(7196):803–806PubMedCrossRefGoogle Scholar
  53. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89PubMedCrossRefGoogle Scholar
  54. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309(5740):1573–1576. doi:10.1126/science.1115079 PubMedCrossRefGoogle Scholar
  55. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906PubMedCrossRefGoogle Scholar
  56. Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104(45):17719–17724PubMedCrossRefGoogle Scholar
  57. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44(1):31–38PubMedCrossRefGoogle Scholar
  58. Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, Thor T, Vandesompele J, Eggert A, Schreiber S, Rahmann S, Schramm A (2010) Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res 38(17):5919–5928PubMedCrossRefGoogle Scholar
  59. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63PubMedCrossRefGoogle Scholar
  60. Shah AA, Meese E, Blin N (2010) Profiling of regulatory microRNA transcriptomes in various biological processes: a review. J Appl Genet 51(4):501–507PubMedCrossRefGoogle Scholar
  61. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145PubMedCrossRefGoogle Scholar
  62. Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38(6):789–802PubMedCrossRefGoogle Scholar
  63. Shippy R, Sendera TJ, Lockner R, Palaniappan C, Kaysser-Kranich T, Watts G, Alsobrook J (2004) Performance evaluation of commercial short-oligonucleotide microarrays and the impact of noise in making cross-platform correlations. BMC Genomics 5:61PubMedCrossRefGoogle Scholar
  64. Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6(2):127–138. doi:10.1038/nrm1568 PubMedCrossRefGoogle Scholar
  65. Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31(19):5676–5684PubMedCrossRefGoogle Scholar
  66. Tan GS, Garchow BG, Liu X, Metzler D, Kiriakidou M (2011) Clarifying mammalian RISC assembly in vitro. BMC Mol Biol 12:19PubMedCrossRefGoogle Scholar
  67. Tang F, Hajkova P, Barton SC, Lao K, Surani MA (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2):e9PubMedCrossRefGoogle Scholar
  68. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids ResGoogle Scholar
  69. Varkonyi-Gasic E, Hellens RP (2010) qRT-PCR of Small RNAs. Meth Mol Biol 631:109–122CrossRefGoogle Scholar
  70. Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34(16):e107PubMedCrossRefGoogle Scholar
  71. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181PubMedCrossRefGoogle Scholar
  72. Wan G, Lim QE, Too HP (2010) High-performance quantification of mature microRNAs by real-time RT-PCR using deoxyuridine-incorporated oligonucleotides and hemi-nested primers. RNA 16(7):1436–1445PubMedCrossRefGoogle Scholar
  73. Wang B, Doench JG, Novina CD (2007) Analysis of microRNA effector functions in vitro. Methods 43(2):91–104PubMedCrossRefGoogle Scholar
  74. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862PubMedCrossRefGoogle Scholar
  75. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical Aspects of microRNA Target Prediction. Curr Mol Med 11(2):93–109PubMedCrossRefGoogle Scholar
  76. Wostenberg C, Quarles KA, Showalter SA (2010) Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA "microprocessor" complex. Biochemistry 49(50):10728–10736PubMedCrossRefGoogle Scholar
  77. Yao B, Li J, Huang H, Sun C, Wang Z, Fan Y, Chang Q, Li S, Xi J (2009) Quantitative analysis of zeptomole microRNAs based on isothermal ramification amplification. RNA 15(9):1787–1794PubMedCrossRefGoogle Scholar
  78. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016. doi:10.1101/gad.1158803 PubMedCrossRefGoogle Scholar
  79. Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33(Web Server issue):W701–W704. doi:10.1093/nar/gki383 PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2011

Authors and Affiliations

  1. 1.Department of Medical Laboratory and Radiation SciencesUniversity of VermontBurlingtonUSA

Personalised recommendations