Advertisement

Journal of Applied Genetics

, Volume 52, Issue 3, pp 269–277 | Cite as

Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids

  • Mariyana Georgieva
  • Adél Sepsi
  • Nedyalka Tyankova
  • Márta Molnár-LángEmail author
Plant Genetics ∙ Original Paper

Abstract

Fluorescence and genomic in situ hybridization (FISH and GISH) were used to establish the cytogenetic constitution of two wheat × Thinopyrum intermedium partial amphiploids H95 and 55(1-57). Both partial amphiploids are high-protein lines having resistance to leaf rust, yellow rust and powdery mildew and have in total 56 chromosomes per cell. Repetitive DNA probes (pTa71, Afa family and pSc119.2) were used to identify the individual wheat chromosomes and to reveal the distribution of these probes within the alien chromosomes. FISH detected 6B tetrasomy in H95 and a null (1D)-tetrasomy (1B) in 55(1-57). GISH was carried out using biotin labeled Th. intermedium DNA and digoxigenin labeled Pseudoroegneria spicata DNA as probes, subsequently. GISH results revealed 44 wheat chromosomes and four Thinopyrum chromosome pairs, including three S and one J chromosome pairs in line H95. Line 55(1-57), contained 42 wheat chromosomes and six Th. intermedium pairs, including two S and one JS pairs. Additionally, two identical translocated chromosome pairs with diminished affinity to the alien chromatin were detected in both amphiploids. Another two translocations were found in 55(1-57), with satellite sections from the Thinopyrum J genome.

Keywords

FISH GISH High protein content Karyotyping Wheat-Thinopyrum intermedium amphiploids 

Notes

Acknowledgments

This study was supported by the AGRISAFE Programme (EU-FP7-REGPOT 2007-1, grant agreement No. 203288) and the Hungarian National Research Fund (K75381). The authors gratefully acknowledge the support of the Bilateral Cooperation (No.38) between the Bulgarian and Hungarian Academy of Sciences, and thank their Bulgarian and Hungarian collaborators for providing lab facilities and fruitful discussion during this work. Thanks are due to Barbara Harasztos for revising the manuscript linguistically.

Supplementary material

13353_2011_37_Fig5_ESM.gif (98 kb)
Fig. S1

GISH on mitotic chromosomes of the wheat-Thinopyrum intermedium amphiploid H95. (a) GISH using digoxigenin-labelled S genomic probe. Twelve wheatgrass chromosomes fluoresced in red (marked with arrows). (b) GISH with biotin-labelled A genomic probe. Intraspecific translocation on 4A was marked with arrow (GIF 98 kb)

13353_2011_37_MOESM1_ESM.tif (21.4 mb)
High resolution image (TIFF 21891 kb)

References

  1. Banks PM, Xu SJ, Wang RR-C, Larkin PJ (1993) Varying chromosome composition of 56-chromosome wheat × Thinopyrum intermedium partial amphiploids. Genome 36:207–215. doi: 10.1139/g93-029 PubMedCrossRefGoogle Scholar
  2. Bedbrook J, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560. doi: 10.1016/0092-8674(80)90529-2 PubMedCrossRefGoogle Scholar
  3. Chen Q (2005) Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe - A landmark approach for Thinopyrum genome research. Cytogenet Genome Res 109:350–360. doi: 10.1159/000082419 PubMedCrossRefGoogle Scholar
  4. Chen Q, Conner RL, Ahmad F, Laroche A, Fedak G, Thomas JB (1998a) Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum x Thinopyrum ponticum and T. aestivum x Th. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Theor Appl Genet 97:1–8. doi: 10.1007/s001220050860 CrossRefGoogle Scholar
  5. Chen Q, Conner RL, Laroche A, Thomas JB (1998b) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586. doi: 10.1139/gen-41-4-580 PubMedGoogle Scholar
  6. Chen Q, Friebe B, Conner RL, Laroche A, Thomas JB, Gill BS (1998c) Molecular cytogenetic characterization of Thinopyrum intermedium derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theor Appl Genet 96:1–7. doi: 10.1007/s001220050701 CrossRefGoogle Scholar
  7. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078. doi: 10.1093/jxb/erj124 PubMedCrossRefGoogle Scholar
  8. Dewey DR (1962) The genome structure of intermediate wheatgrass. J Hered 53:282–290Google Scholar
  9. Dong Y, Bu X, Luan Y, He M, Liu B (2004) Molecular characterization of a cryptic wheat-Thinopyrum intermedium translocation line: evidence for genomic instability in nascent allopolyploid and aneuploid lines. Genet Mol Biol 27:237–241. doi: 10.1590/S1415-47572004000200018 CrossRefGoogle Scholar
  10. Dvořák J, Sosulski FW (1974) Effects of additions and substitutions of Agropyron elongatum chromosomes on quantitative characters in wheat. Genome 16:627–637. doi: 10.1139/g74-069 Google Scholar
  11. Fedak G, Han F (2005) Characterization of derivatives from wheat– Thinopyrum wide crosses. Cytogenet Genome Res 109:360–367. doi: 10.1159/000082420 PubMedCrossRefGoogle Scholar
  12. Fedak G, Chen Q, Conner RL, Laroche A, Petroski R, Armstrong KW (2000) Characterization of wheat–Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome 43:712–719. doi: 10.1139/gen-43-4-712 PubMedGoogle Scholar
  13. Forster BP, Reader SM, Forsyth SA, Koebner RMD, Miller TE, Gale MD, Cauderon Y (1987) An assessment of the homoeology of six Agropyron intermedium chromosomes added to wheat. Genet Res 50:91–97. doi: 10.1017/S001667230002348X CrossRefGoogle Scholar
  14. Friebe B, Mukai Y, Gill BS, Cauderon Y (1992) C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet 84:899–905. doi: 10.1007/BF00227402 CrossRefGoogle Scholar
  15. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. doi: 10.1093/nar/7.7.1869 PubMedCrossRefGoogle Scholar
  16. Gill KS, Gill BS, Endo TR, Boyko EV (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012PubMedGoogle Scholar
  17. Han F, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076. doi: 10.1007/s00122-004-1720-y PubMedCrossRefGoogle Scholar
  18. Hu L-J, Li G-R, Zeng Z-X, Chang Z-J, Liu C, Zhou J-P, Yang Z-J (2011) Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica 177:169–177. doi: 10.1007/s10681-010-0216-x CrossRefGoogle Scholar
  19. Kishii M, Wang RR-C, Tsujimoto H (2005) GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. In: Holubec V, Barkworth M, Bothmer R, (Eds.), Proc 5th Int Triticeae Symp, Prague, Czech Republic, Czech J Genet Plant Breed 41:92–95Google Scholar
  20. Kubaláková M, Kovárová P, Suchánková P, Cíhalíková J, Bartos J, Lucretti S, Watanabe N, Kianian SF, Dolezel J (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829. doi: 10.1534/genetics.104.039180 PubMedCrossRefGoogle Scholar
  21. Laptchenko D (1953) General conclusions from the breeding of winter wheat-Agropyron hybrids. In: Mussiiko AC (Eds.), Problems of breeding. Kiev, pp. 66-100Google Scholar
  22. Le HT, Armstrong KC, Miki B (1989) Detection of rye DNA in wheat–rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep 7:150–158. doi: 10.1007/BF02669770 CrossRefGoogle Scholar
  23. Li DY, Ru YY, Zhang XY (2004) Chromosomal distribution of the 18 S-5.8 S-26 S rDNA loci and heterogeneity of nuclear ITS regions in Thinopyrum intermedium (Poaceae: Triticeae). Acta Bot Sin 46:1234–1241Google Scholar
  24. Liu S, Wang H (2002) Breeding and molecular cytogenetic identification of wheat-Thinopyrum intermedium addition lines resistant to powdery mildew. Chin Sci Bull 47:1892–1896CrossRefGoogle Scholar
  25. Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45. doi: 10.1139/g03-089 PubMedCrossRefGoogle Scholar
  26. McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640. doi: 10.1139/g90-094 PubMedCrossRefGoogle Scholar
  27. Molnár-Láng M, Linc G, Friebe RB, Sutka J (2000) Detection of wheat–barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123. doi: 10.1023/A:1003840200744 CrossRefGoogle Scholar
  28. Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494. doi: 10.1139/g93-067 PubMedCrossRefGoogle Scholar
  29. Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and distribution among Triticeae. Genome 38:479–486. doi: 10.1139/g95-063 PubMedCrossRefGoogle Scholar
  30. Naranjo T (1992) The use of homoeologous pairing in the identification of homoeologous relationships in Triticeae. Hereditas 116:219–223. doi: 10.1111/j.1601-5223.1992.tb00827.x Google Scholar
  31. Pienaar RV (1990) Wheat × Thinopyrum hybrids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Springer-Verlag, Berlin, pp 167–217Google Scholar
  32. Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255Google Scholar
  33. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324Google Scholar
  34. Sepsi A, Molnár I, Szalay D, Molnár-Láng M (2008) Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116:825–834. doi: 10.1007/s00122-008-0716-4 PubMedCrossRefGoogle Scholar
  35. Sharp PJ, Kreis M, Shewry PR, Gale D (1988) Location of beta-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290. doi: 10.1007/BF00303966 CrossRefGoogle Scholar
  36. Szalay D (1965) On the protein content in grain crop wheat-wheatgrass hybrids. In: Georgieva R, Tzikov D (eds) Symposium on remote hybridization in plants. Zemizdat, Sofia, pp 65–72Google Scholar
  37. Tang SX, Li ZS, Jia X, Larkin PJ (2000) Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5 and disease-resistant derivatives in wheat. Theor Appl Genet 100:344–352. doi: 10.1007/s001220050045 CrossRefGoogle Scholar
  38. Xin ZY, Brettell RIS, Cheng EM, Waterhouse PM, Appels R, Banks PM, Zhou GH, Chen X, Larkin PJ (1988) Characterization of a potential source of barley yellow dwarf virus resistance for wheat. Genome 30:250–257. doi: 10.1139/g88-043 CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2011

Authors and Affiliations

  • Mariyana Georgieva
    • 1
  • Adél Sepsi
    • 2
  • Nedyalka Tyankova
    • 1
  • Márta Molnár-Láng
    • 2
    Email author
  1. 1.Institute of Plant Physiology and GeneticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations