Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 949–959 | Cite as

Convectively Coupled Equatorial Waves Simulated by CAMS-CSM

  • Lu WangEmail author
  • Tianjun Zhou
  • Jian Li
  • Xinyao Rong
  • Haoming Chen
  • Yufei Xin
  • Jingzhi Su
Special Collection on CAMS-CSM

Abstract

The Chinese Academy of Meteorological Sciences developed a Climate System Model (CAMS-CSM) to participate in the upcoming Coupled Model Intercomparison Project phase 6 (CMIP6). In this study, we assessed the model performance in simulating the convectively coupled equatorial waves (CCEWs) by comparing the daily output of precipitation from a 23-yr coupled run with the observational precipitation data from Global Precipitation Climatology Project (GPCP). Four dominant modes of CCEWs including the Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), tropical depression-type (TD-type) waves, and their annual mean and seasonal cycle characteristics are investigated respectively. It is found that the space-time spectrum characteristics of each wave mode represented by tropical averaged precipitation could be very well simulated by CAMS-CSM, including the magnitudes and the equivalent depths. The zonal distribution of wave associated precipitation is also well simulated, with the maximum centers over the Indian Ocean and the Pacific Ocean. However, the meridional distribution of the wave activities is poorly simulated, with the maximum centers shifted from the Northern Hemisphere to the Southern Hemisphere, especially the Kelvin, MRG, and TD waves. The seasonal cycle of each wave mode is generally captured by the model, but their amplitudes over the Southern Hemisphere during boreal winter are grossly overestimated. The reason for the excessive wave activity over the southern Pacific Ocean in the simulation is discussed.

Key words

CAMS-CSM convectively coupled equatorial waves precipitation seasonal cycle model evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the anonymous reviewers and the editor for their constructive comments, which significantly improved this paper.

References

  1. Chen, L., T. Li, and Y. Q. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 3250–3274, doi:  https://doi.org/10.1175/jclid-14-00439.1.CrossRefGoogle Scholar
  2. Chen, L., W. P. Zheng, and P. Braconnot, 2019: Towards understanding the suppressed ENSO activity during mid-Holocene in PMIP2 and PMIP3 simulations. Climate Dyn., 33, 1095–1110, doi:  https://doi.org/10.1007/s00382-019-04637-z.CrossRefGoogle Scholar
  3. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013–1024, doi:  https://doi.org/10.1175/BAMS-84-8-1013.CrossRefGoogle Scholar
  4. DeMott, C. A., C. Stan, D. A. Randall, et al., 2011: The Asian monsoon in the superparameterized CCSM and its relationship to tropical wave activity. J. Climate, 24, 5134–5156, doi:  https://doi.org/10.1175/2011JCLI4202.1.CrossRefGoogle Scholar
  5. Griffies, S. M., M. J. Harrison, P. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report No. 5, Princeton, NJ, NOAA/Geophysical Fluid Dynamics Laboratory, 339 pp.Google Scholar
  6. Huang, P., and R. H. Huang, 2011: Climatology and interannual variability of convectively coupled equatorial waves activity. J. Climate, 24, 4451–4465, doi:  https://doi.org/10.1175/2011JCLI4021.1.CrossRefGoogle Scholar
  7. Huang, P., C. Chou, and R. H. Huang, 2013: The activity of convectively coupled equatorial waves in CMIP3 global climate models. Theor. Appl. Climatol., 112, 697–711, doi:  https://doi.org/10.1007/s00704-012-0761-4.CrossRefGoogle Scholar
  8. Huffman, G. J., R. F. Adler, M. M. Morrissey, et al., 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36–50, doi:  https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.CrossRefGoogle Scholar
  9. Janicot, S., F. Mounier, S. Gervois, et al., 2010: The dynamics of the West African monsoon. Part V: The detection and role of the dominant modes of convectively coupled equatorial Rossby waves. J. Climate, 23, 4005–4024, doi:  https://doi.org/10.1175/2010JCLI3221.1.CrossRefGoogle Scholar
  10. Kawamura, R., T. Murakami, and B. Wang, 1996: Tropical and mid-latitude 45-day perturbations over the western Pacific during the northern summer. J. Meteor. Soc. Japan, 74, 867–890, doi:  https://doi.org/10.2151/jmsj1965.74.6_867.CrossRefGoogle Scholar
  11. Kiladis, G. N., M. C. Wheeler, P. T. Haertel, et al., 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:  https://doi.org/10.1029/2008rg000266.CrossRefGoogle Scholar
  12. Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 1888–1913, doi:  https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.CrossRefGoogle Scholar
  13. Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 1765–1780, doi:  https://doi.org/10.1175/JCLI-D-13-00337.1.CrossRefGoogle Scholar
  14. Lin, J.-L., G. N. Kiladis, B. E. Mapes, et al., 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690, doi:  https://doi.org/10.1175/JCLI3735.1.CrossRefGoogle Scholar
  15. Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837, doi:  https://doi.org/10.1175/1520-0493(1494)122<0814:OOT-DTO>2.0.CO;2.CrossRefGoogle Scholar
  16. Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43, doi:  https://doi.org/10.2151/jmsj1965.44.1_25.CrossRefGoogle Scholar
  17. Nordeng, T. E., 1994: Extended Versions of the Convective Parameterization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. Technical Memorandum 206, Reading, UK, ECMWF, 41 pp.Google Scholar
  18. Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: Interaction between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585–607, doi:  https://doi.org/10.1007/s00382-015-2468-6.CrossRefGoogle Scholar
  19. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi:  https://doi.org/10.1029/2002JD002670.CrossRefGoogle Scholar
  20. Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32, 839–861, doi:  https://doi.org/10.1007/s13351-018-8058-x.CrossRefGoogle Scholar
  21. Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 2105–2132, doi:  https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.CrossRefGoogle Scholar
  22. Roundy, P. E., C. J. Schreck III, and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Wea. Rev., 137, 469–478, doi:  https://doi.org/10.1175/2008MWR2595.1.CrossRefGoogle Scholar
  23. Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 30–53, doi:  https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.CrossRefGoogle Scholar
  24. Straub, K. H., G. N. Kiladis, and P. E. Ciesielski, 2006: The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn. Atmos. Oceans, 42, 216–238, doi:  https://doi.org/10.1016/j.dynatmoce.2006.02.005.CrossRefGoogle Scholar
  25. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, doi:  https://doi.org/10.1175/1520-0493(1989)117>1779:ACMFSF>2.0.CO;2.CrossRefGoogle Scholar
  26. Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012a: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 1108–1124, doi:  https://doi.org/10.1175/MWR-D-11-00122.1.CrossRefGoogle Scholar
  27. Ventrice, M. J., C. D. Thorncroft, and C. J. Schreck III, 2012b: Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Wea. Rev., 140, 2198–2214, doi:  https://doi.org/10.1175/MWR-D-11-00305.1.CrossRefGoogle Scholar
  28. Wang, L., and L. Chen, 2016: Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn. Atmos. Oceans, 76, 116–126, doi:  https://doi.org/10.1016/j.dynatmoce.2016.10.004.CrossRefGoogle Scholar
  29. Wang, L., and L. Chen, 2017: Effect of basic state on seasonal variation of convectively coupled Rossby wave. Dyn. Atmos. Oceans, 77, 54–63, doi:  https://doi.org/10.1016/j.dynatmoce.2016.11.002.CrossRefGoogle Scholar
  30. Wang, L., and T. Li, 2017: Convectively coupled Kelvin waves in CMIP5 coupled climate models. Climate Dyn., 48, 767–781, doi:  https://doi.org/10.1007/s00382-016-3109-4.CrossRefGoogle Scholar
  31. Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399, doi:  https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.CrossRefGoogle Scholar
  32. Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613–640, doi:  https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.CrossRefGoogle Scholar
  33. Yang, G.-Y., B. Hoskins, and J. Slingo, 2007: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 44, 3406–3423, doi:  https://doi.org/10.1175/JAS4017.1.CrossRefGoogle Scholar
  34. Zhang, X. X., H. L. Liu, and M. H. Zhang, 2015: Double ITCZ in coupled ocean-atmosphere models: From CMIP3 to CMIP5. Geophys. Res. Lett., 42, 8651–8659, doi:  https://doi.org/10.1002/2015GL065973.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Lu Wang
    • 1
    • 2
    Email author
  • Tianjun Zhou
    • 2
  • Jian Li
    • 3
  • Xinyao Rong
    • 3
  • Haoming Chen
    • 3
  • Yufei Xin
    • 3
  • Jingzhi Su
    • 3
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Severe WeatherChinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijingChina

Personalised recommendations